Circular-polarization-sensitive metamaterial based on triple-quantum-dot molecules.

Phys Rev Lett

Institut für Theoretische Festkörperphysik, Karlsruhe Institute of Technology, 76128 Karlsruhe, Germany and DFG Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology, 76128 Karlsruhe, Germany.

Published: December 2014

We propose a new type of chiral metamaterial based on an ensemble of artificial molecules formed by three identical quantum dots in a triangular arrangement. A static magnetic field oriented perpendicular to the plane breaks mirror symmetry, rendering the molecules sensitive to the circular polarization of light. By varying the orientation and magnitude of the magnetic field one can control the polarization and frequency of the emission spectrum. We identify a threshold frequency Ω, above which we find strong birefringence. In addition, Kerr rotation and circular-polarized lasing action can be implemented. We investigate the single-molecule lasing properties for different energy-level arrangements and demonstrate the possibility of circular-polarization conversion. Finally, we analyze the effect of weak stray electric fields or deviations from the equilateral triangular geometry.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.113.236801DOI Listing

Publication Analysis

Top Keywords

metamaterial based
8
magnetic field
8
circular-polarization-sensitive metamaterial
4
based triple-quantum-dot
4
triple-quantum-dot molecules
4
molecules propose
4
propose type
4
type chiral
4
chiral metamaterial
4
based ensemble
4

Similar Publications

Metamaterials hold great promise for application in the field of perfect absorbers due to their remarkable ability to manipulate electromagnetic waves. In this work, a full-spectrum ultra-wideband solar absorber with a multilayer metal-dielectric stacked structure is designed. Our absorber is simple and easy to manufacture, with Ti serving as the substrate, overlaid with SiN spacer layers and four pairs of Ti-SiN ring columns.

View Article and Find Full Text PDF

In this paper, an optically transparent dual-band microwave chiral metamaterial based on indium tin oxide (ITO) strips is proposed. The rotation angle and length of the three ITO strips on the structural layer can be varied to generate two independent frequency bands in the circular dichroism (CD) spectrum. The maximum CD value is 0.

View Article and Find Full Text PDF

We provide the first direct experimental evidence for the reorientation of liquid crystals by polarized radiation from a conventional, low power, oscillator-based terahertz time-domain spectrometer. Using a terahertz pump - optical probe setup, we observed that the reorientation occurs locally through the resonant amplification of the terahertz field in a specially designed planar metamaterial, adjacent to the liquid crystal layer, and increases with increasing incident terahertz intensity. Our work thus demonstrates that it is possible to induce strong optical nonlinearity in liquid crystals in the terahertz part of the spectrum, paving the way toward the development of new all-optical active terahertz devices as well as electric field sensors for localized resonant systems.

View Article and Find Full Text PDF

In this study, we developed terahertz (THz) metamaterial devices with attenuated total reflection (ATR) geometries for biosensing applications. This was achieved by transferring the metamaterial patterns fabricated on a polyimide film to a prism-top surface. We characterized the resonance characteristics of metasurfaces for different THz wave polarizations and gap structure orientations in the metamaterials.

View Article and Find Full Text PDF

Architectural metamaterials that span different length scales and are either self-similar or dissimilar to one another make up hierarchical lattices. Comparing hierarchical lattices to traditional ones reveals that they offer superior and customizable properties, which allows for a wide variety of material property manipulation and optimization. Each computer network can be represented as a graph, where nodes alternate as vertices and links are edges.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!