Spin fluctuations were studied over a wide momentum (ℏQ) and energy (E) space in the frustrated d-electron heavy-fermion metal LiV_{2}O_{4} by time-of-flight inelastic neutron scattering. We observed the overall Q-E evolutions near the characteristic Q=0.6 Å^{-1} peak and found another weak broad magnetic peak around 2.4 Å^{-1}. The data are described by a simple response function, a partially delocalized magnetic form factor, and antiferromagnetic short-range spatial correlations, indicating that heavy-fermion formation is attributable to spin-orbit fluctuations with orbital hybridization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.113.236402 | DOI Listing |
J Phys Condens Matter
January 2025
School of Physical Sciences, Indian Institute of Technology Mandi, Mandi, Mandi, Himachal Pradesh, 175075, INDIA.
Magnetic systems, wherein competing degree of freedoms arising from spin orbit coupling and crystal electric field lead to non-trivial magnetic ground states, remains in the forefront of research in condensed matter physics. Here, we present a comprehensive investigation on three-dimensional rare-earth based spin systems NdTaO4 and NdNbO4, where the Nd ions sit on a stretched diamond lattice. No signatures of long-range ordering and spin freezing are observed down to 1.
View Article and Find Full Text PDFNature
January 2025
Department of Physics, Columbia University, New York, NY, USA.
The discovery of superconductivity in twisted bilayer and trilayer graphene has generated tremendous interest. The key feature of these systems is an interplay between interlayer coupling and a moiré superlattice that gives rise to low-energy flat bands with strong correlations. Flat bands can also be induced by moiré patterns in lattice-mismatched and/or twisted heterostructures of other two-dimensional materials, such as transition metal dichalcogenides (TMDs).
View Article and Find Full Text PDFNat Commun
November 2024
Department of Physics and Astronomy, Rutgers University, Piscataway, NJ, USA.
We analyzed spin polarization dynamics in a two-dimensional system of spin 1/2 charged particles with spin-orbit interaction in perpendicular magnetic field in the presence of external noise. It was shown that spin polarization reveals quantum oscillations, collapses, and revivals. The hierarchy of time scales corresponding to quantum oscillations, collapses, and revivals was identified and analyzed.
View Article and Find Full Text PDFJ Chem Theory Comput
November 2024
Donostia International Physics Center DIPC, Paseo Manuel Lardizabal 4, 20018 Donostia-San Sebastián, Spain.
Boron-doped graphene nanoribbons are promising platforms for developing organic materials with magnetic properties. Boron dopants can be used to create localized magnetic states in nanoribbons with tunable interactions. Controlling the coherence times of these magnetic states is the very first step in designing materials for quantum computation or information storage.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!