Although the hypoxia-inducible factor (HIF)-hydroxylase oxygen-sensing pathway has been extensively reviewed in the context of cellular responses to hypoxia and cancer biology, its importance in regulating innate immune biology is less well described. In this review, we focus on the role of the HIF-hydroxylase pathway in regulating myeloid cell responses and its relevance to inflammatory lung disease. The more specific roles of individual HIF/ prolyl hydroxylase pathway members in vivo are discussed in the context of lineage-specific rodent models of inflammation, with final reference made to the therapeutic challenges of targeting the HIF/hydroxylase pathway in immune cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4298968 | PMC |
http://dx.doi.org/10.1513/AnnalsATS.201403-108AW | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Department of Chemistry, BITS Pilani, Pilani Campus, Pilani, Rajasthan 333031, India.
Accurate oxygen detection and measurement of its concentration is vital in biological and industrial applications, necessitating highly sensitive and reliable sensors. Optical sensors, valued for their real-time monitoring, nondestructive analysis, and exceptional sensitivity, are particularly suited for precise oxygen measurements. Here, we report a dual-emissive iridium(III) complex, IrNPh, featuring "aggregation-induced emission" (AIE) properties and used for sensitive oxygen sensing.
View Article and Find Full Text PDFBMC Med Genomics
January 2025
Department of Anaesthesiology, Centre of Head and Orthopedics, Copenhagen University Hospital, Rigshospitalet, Inge Lehmanns Vej 6, Copenhagen, 2100, Denmark.
Background: Sepsis and shock are common complications of necrotising soft tissue infections (NSTI). Sepsis encompasses different endotypes that are associated with specific immune responses. Hyperbaric oxygen (HBO) treatment activates the cells oxygen sensing mechanisms that are interlinked with inflammatory pathways.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao, China. Electronic address:
Tris(2-chloroethyl) phosphate, an extensively used organophosphorus flame retardant in consumer products, has caused pervasive environmental contamination and increased human exposure, raising concerns about its cardiotoxic potential. However, the detailed toxicological profile, particularly concerning the crucial cardiac energy metabolism, and the precise mechanisms remain poorly understood. This study in C57BL/6 J mice exposed to TCEP for 36 days at varying doses revealed cardiac dysfunction, structural abnormalities, and hypoxia.
View Article and Find Full Text PDFBiomolecules
December 2024
Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA.
HIF-1α plays a crucial regulatory role in vascular calcification (VC), primarily influencing the osteogenic differentiation of VSMCs through oxygen-sensing mechanisms. Under hypoxic conditions, the stability of HIF-1α increases, avoiding PHD and VHL protein-mediated degradation, which promotes its accumulation in cells and then activates gene expressions related to calcification. Additionally, HIF-1α modulates the metabolic state of VSMCs by regulating the pathways that govern the switch between glycolysis and oxidative phosphorylation, thereby further advancing the calcification process.
View Article and Find Full Text PDFCurr Rev Clin Exp Pharmacol
December 2024
School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India.
Pulmonary hypertension (PH) is a severe, progressive disorder characterized by elevated pulmonary arterial pressure, leading to right ventricular failure and increased mortality. Despite advancements in management, the median survival for PH patients remains 5-7 years, with an inhospital mortality rate of approximately 6%. The core pathological feature of PH is pulmonary vascular remodeling (PVR), a multifactorial process involving endothelial dysfunction, inflammation, and aberrant immune responses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!