Diboron as a reductant for nickel-catalyzed reductive coupling: rational design and mechanistic studies.

Chem Commun (Camb)

State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.

Published: February 2015

Diboron (B2pin2) has been identified as an efficient and environmentally benign reducing reagent for reductive coupling reactions for the first time, which enables the nickel-catalyzed reductive tetramerization of alkynes to be performed with high efficiency. Mechanistic and kinetic studies indicate that the facile reductive elimination to form the B-B bond from the dinuclear Ni-Ni complexes is responsible for the high efficiency. The activation enthalpy (ΔH(‡) = 56.5 kJ mol(-1)), entropy (ΔS(‡) = -128 J mol(-1) K(-1)) and the substituent effect (ρ = 1.43) on this reaction were obtained.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c4cc08703hDOI Listing

Publication Analysis

Top Keywords

nickel-catalyzed reductive
8
reductive coupling
8
high efficiency
8
diboron reductant
4
reductant nickel-catalyzed
4
reductive
4
coupling rational
4
rational design
4
design mechanistic
4
mechanistic studies
4

Similar Publications

We present a highly efficient and versatile nickel-catalyzed protocol for the reductive cross-coupling of unactivated CFH-substituted electrophiles with a wide variety of aryl and alkenyl halides. This novel approach offers high catalytic reactivity and broad functional group compatibility, enabling late-stage fluoroalkylation of drug molecules.

View Article and Find Full Text PDF

The development of sustainable synthetic methods for converting alcohols to amines is of great interest due to their widespread use in pharmaceuticals and fine chemicals. In this work, we present an electrochemical approach by using green electrons for the selective oxidation of benzyl alcohol to benzaldehyde using a NiOOH catalyst, followed by its reductive amination to form benzyl--butylamine. The number of Ni monolayer equivalents on the catalyst was found to significantly influence selectivity, with 2 monolayers achieving up to 90% faradaic efficiency (FE) for benzaldehyde in NaOH, while 10 monolayers performed best in a -butylamine solution (pH 11), yielding 100% FE for benzaldehyde.

View Article and Find Full Text PDF

Exploring nickel-catalyzed organochalcogen synthesis cross-coupling of benzonitrile and alkyl chalcogenols with computational tools.

Org Biomol Chem

January 2025

Secció de Química Inorgànica, Departament de Química Inorgànica i Orgànica, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain.

The preparation of organochalcogens has increased in recent times due to their promising biological activity properties. This work studies the reaction mechanism of a nickel(0)-catalyzed cross-coupling between benzonitrile and propanethiol to produce new C-S bonds by computational means. The proposed mechanism follows the classical oxidative addition/transmetalation/reductive elimination cross-coupling sequence, involving an unusual oxidative addition of a Ph-CN bond onto the active species.

View Article and Find Full Text PDF

Nitriles are valuable compounds because they have widespread applications in organic chemistry. This report details the nickel-catalyzed reductive cyanation of aryl halides and epoxides with cyanogen bromide for the synthesis of nitriles. This robust protocol underscores the practicality of using a commercially available and cost-effective cyanation reagent.

View Article and Find Full Text PDF

Chemodivergent, enantio- and regioselective couplings of alkynes, aldehydes and silanes enabled by nickel/N-heterocyclic carbene catalysis.

Sci Bull (Beijing)

December 2024

State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China. Electronic address:

Divergent synthesis of valuable molecules through common starting materials and metal catalysis represents a longstanding challenge and a significant research goal. We here describe chemodivergent, highly enantio- and regioselective nickel-catalyzed reductive and dehydrogenative coupling reactions of alkynes, aldehydes, and silanes. A single chiral Ni-based catalyst is leveraged to directly prepare three distinct enantioenriched products (silyl-protected trisubstituted chiral allylic alcohols, oxasilacyclopentenes, and silicon-stereogenic oxasilacyclopentenes) in a single chemical operation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!