Aims. The present study tries to investigate the gene expression profile of bradycardia rabbits' hearts after SSYX (SSYX, a traditional Chinese medicine) treatment. Methods. Eighteen adult rabbits were randomly assigned in three groups: sham, model, and SSYX treatment groups. Heart rate was recorded in rabbits and total RNA was isolated from hearts. Gene expression profiling was conducted and quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR) was performed to confirm the gene expression results. Patch clamp using human induced pluripotent stem cell-derived cardiomyocytes was applied to record the calcium current in the presence of SSYX. Results. The mean RR interval reduced after six weeks due to the injury of the sinoatrial node in the model group. This effect was partially reversed by 4-week SSYX treatment. cDNA microarray demonstrated that genes related with pacemaker current, calcium ion homeostasis, and signaling were altered by SSYX treatment. Results from patch clamp demonstrated that SSYX reduced the calcium current which is consistent with gene expression results. Conclusion. The present study shows mRNA remodeling of bradycardia and demonstrates that SSYX is effective in treating bradycardia by reversing altered gene expression in bradycardia models. Reduced calcium current by SSYX also confirmed the gene expression results.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4265696 | PMC |
http://dx.doi.org/10.1155/2014/715937 | DOI Listing |
Elife
January 2025
Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.
Heritable fragile bone disorders (FBDs), ranging from multifactorial to rare monogenic conditions, are characterized by an elevated fracture risk. Validating causative genes and understanding their mechanisms remain challenging. We assessed a semi-high throughput zebrafish screening platform for rapid in vivo functional testing of candidate FBD genes.
View Article and Find Full Text PDFAnticancer Agents Med Chem
January 2025
Department of Biochemistry, Faculty of Science, Selcuk University, Konya, Turkiye.
Introduction/objective: Plants and their bioactive compounds play a crucial role in the pharmaceutical industry for treating cancer. To date, the cytotoxic and antiproliferative effects of Hypericum perforatum methanol extract on human thyroid cancer cell lines have not been thoroughly explored. The present study aimed to assess the potential anti-cancer effects of HPME on human thyroid cancer and investigate its potential therapeutic benefits.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
January 2025
British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, United Kingdom. (M.W., M.F., R.O., L.S., M.M., C.M.S.).
Background: The ECM (extracellular matrix) provides the microenvironmental niche sensed by resident vascular smooth muscle cells (VSMCs). Aging and disease are associated with dramatic changes in ECM composition and properties; however, their impact on the VSMC phenotype remains poorly studied.
Methods: Here, we describe a novel in vitro model system that utilizes endogenous ECM to study how modifications associated with age and metabolic disease impact the VSMC phenotype.
Chem Biodivers
January 2025
Yatsen Global Innovation R&D Center, Yatsen Global Innovation R&D Center, No. 11 Building, No. 210, Wenshui Road, Jingan District, Shanghai, CHINA.
A new depside glucoside rosarugoside E (1), together with four known compounds punicalagin (2), corilagin (3), granatin B (4) and ellagic acid (5) were isolated from the ethanol extract of pomegranate (Punica granatum L.) flower. Their structures were identified based on careful analysis of various spectral data including UV, IR, HR-ESI-MS, 1D and 2D NMR.
View Article and Find Full Text PDFAnn Transl Med
December 2024
Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA.
Background: Osteoarthritis (OA) is increasingly thought to be a multifactorial disease in which sustained gut inflammation serves as a continued source of inflammatory mediators driving degenerative processes at distant sites such as joints. The objective of this study was to use the equine model of naturally occurring obesity associated OA to compare the fecal microbiome in OA and health and correlate those findings to differential gene expression synovial fluid (SF) cells, circulating leukocytes and cytokine levels (plasma, SF) towards improved understanding of the interplay between microbiome and immune transcriptome in OA pathophysiology.
Methods: Feces, peripheral blood mononuclear cells (PBMCs), and SF cells were isolated from healthy skeletally mature horses (n=12; 6 males, 6 females) and those with OA (n=6, 2 females, 4 males).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!