Pioglitazone restores IGFBP-3 levels through DNA PK in retinal endothelial cells cultured in hyperglycemic conditions.

Invest Ophthalmol Vis Sci

Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, Tennessee, United States Department of Anatomy & Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee, United States Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee, United States.

Published: December 2014

Purpose: Previously, we reported that pioglitazone prevented insulin resistance and cell death in type 2 diabetic retina by reducing TNFα and suppressor of cytokine signaling 3 (SOCS3) levels. Numerous reports suggest prominent vasoprotective effects of insulin growth factor binding protein-3 (IGFBP-3) in diabetic retinopathy. We hypothesized that pioglitazone protects against retinal cell apoptosis by regulating IGFBP-3 levels, in addition to reducing TNFα. The current study explored potential IGFBP-3 regulatory pathways by pioglitazone in retinal endothelial cells cultured in high glucose.

Methods: Primary human retinal endothelial cells (REC) were grown in normal (5 mM) and high glucose (25 mM) and treated with pioglitazone for 24 hours. Cell lysates were processed for Western blotting and ELISA analysis to evaluate IGFBP-3, TNFα, and cleaved caspase 3 protein levels.

Results: Our results show that treatment with pioglitazone restored the high glucose-induced decrease in IGFBP-3 levels. This regulation was independent of TNFα actions, as reducing TNFα levels with siRNA did not prevent pioglitazone from increasing IGFBP-3 levels. Pioglitazone required protein kinase A (PKA) and DNA-dependent protein kinase (DNA PK) activity to regulate IGFBP-3, as specific inhibitors for each protein prevented pioglitazone-mediated normalization of IGFBP-3 in high glucose. Insulin growth factor binding protein-3 activity was increased and apoptosis decreased by pioglitazone, which was eliminated when serine site 156 of IGFBP-3 was mutated suggesting a key role of this phosphorylation site in pioglitazone actions.

Conclusions: Our findings suggest that pioglitazone mediates regulation of IGFBP-3 via activation of PKA/DNA PK pathway in hyperglycemic retinal endothelial cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4294286PMC
http://dx.doi.org/10.1167/iovs.14-15550DOI Listing

Publication Analysis

Top Keywords

igfbp-3 levels
16
retinal endothelial
16
endothelial cells
16
reducing tnfα
12
pioglitazone
11
igfbp-3
11
cells cultured
8
insulin growth
8
growth factor
8
factor binding
8

Similar Publications

Effects of Intrauterine Isoproterenol Administration on Ovarian Follicular Development in Cows.

Vet Med Sci

January 2025

Department of Biochemistry, Faculty of Veterinary Medicine, Erzurum, Turkey.

Background: Isoproterenol (ISO) is a nonselective beta-adrenergic receptor agonist known for its vasodilatory effects. This experiment aims to investigate whether intrauterine ISO administration could alter vascular indices and follicular development in postpartum Holstein cows.

Objectives: The objectives are to evaluate the effects of intrauterine ISO administration on vascular changes and its impact on follicular development compared to placebo groups.

View Article and Find Full Text PDF

Background: Clear cell renal cell carcinoma (ccRCC) is the most common subtype of renal cell carcinoma (RCC). Due to the lack of symptoms until advanced stages, early diagnosis of ccRCC is challenging. Therefore, the identification of novel secreted biomarkers for the early detection of ccRCC is urgently needed.

View Article and Find Full Text PDF

Purpose: There is controversy as to whether brain magnetic resonance imaging (MRI) should be performed on all children with growth hormone deficiency (GHD) including those judged to have mild GHD. This study was aimed to determine the frequency of pituitary or intracranial abnormalities in pediatric GHD and to identify risk factors that may predict pituitary or intracranial abnormalities.

Methods: A total of 95 pediatric GHD patients were included.

View Article and Find Full Text PDF

Discovery of Glucose Metabolism-Associated Genes in Neuropathic Pain: Insights from Bioinformatics.

Int J Mol Sci

December 2024

Department of Anesthesiology, Laboratory and Clinical Research Institute for Pain, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.

Metabolic dysfunction has been demonstrated to contribute to diabetic pain, pointing towards a potential correlation between glucose metabolism and pain. To investigate the relationship between altered glucose metabolism and neuropathic pain, we compared samples from healthy subjects with those from intervertebral disc degeneration (IVDD) patients, utilizing data from two public datasets. This led to the identification of 412 differentially expressed genes (DEG), of which 234 were upregulated and 178 were downregulated.

View Article and Find Full Text PDF

Serum CS/DS, IGF-1, and IGFBP-3 as Biomarkers of Cartilage Remodeling in Juvenile Idiopathic Arthritis: Diagnostic and Therapeutic Implications.

Biomolecules

November 2024

Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, ul. Jedności 8, 41-200 Sosnowiec, Poland.

Cartilage destruction in juvenile idiopathic arthritis (JIA) is diagnosed, often too late, on basis of clinical evaluation and radiographic imaging. This case-control study investigated serum chondroitin/dermatan sulfate (CS/DS) as a potential biochemical marker of cartilage metabolism, aiming to improve early diagnosis and precision treatment for JIA. We also measured the levels of insulin-like growth factor-1 (IGF-1) and insulin-like growth factor-binding protein-3 (IGFBP-3) (using ELISA methods) in JIA patients ( = 55) both before and after treatment (prednisone, sulfasalazine, methotrexate, administered together), and analyzed their relationships with CS/DS levels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!