A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Aromaticity and amyloid formation: effect of π-electron distribution and aryl substituent geometry on the self-assembly of peptides derived from hIAPP(22-29). | LitMetric

A comprehensive investigation of peptides derived from the 22-29 region of human islet amyloid polypeptide (hIAPP) that contain phenylalanine analogs at position 23 with a variety of electron donating and withdrawing groups, along with heteroaromatic surrogates, has been employed to interrogate how π-electron distribution effects amyloid formation. Kinetic aggregation studies using turbidity measurements indicate that electron rich aromatic ring systems consistently abolish the amyloidogenic propensity of hIAPP(22-29). Electron poor systems modulate the rate of aggregation. Raman and Fourier transform infrared spectroscopy confirm the parallel β-sheet secondary structure of aggregates derived from peptides containing electron poor phenylalanine analogs and provide direct evidence of ring stacking. Transmission electron microscopy confirms the presence of amyloid fibrils. The effect of aryl substituent geometry on peptide self-assembly reveals that the electronic nature of substituents and not their steric profile is responsible for failure of the electron donating group peptides to aggregate. Non-aggregating hIAPP(22-29) peptides were found to inhibit the self-assembly of full-length hIAPP(1-37). The most potent inhibitory peptides contain phenylalanine with the p-amino and p-formamido functionalities. These novel peptides may serve as leads for the development of future aggregation inhibitors. A potential mechanism for inhibition of amylin self-assembly by electron rich (-29) peptides is proposed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5490837PMC
http://dx.doi.org/10.1016/j.abb.2014.12.008DOI Listing

Publication Analysis

Top Keywords

amyloid formation
8
π-electron distribution
8
aryl substituent
8
substituent geometry
8
peptides
8
peptides derived
8
phenylalanine analogs
8
electron donating
8
electron rich
8
electron poor
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!