Culture conditions profoundly impact phenotype in BEAS-2B, a human pulmonary epithelial model.

J Appl Toxicol

Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, 85724, USA.

Published: August 2015

BEAS-2B, an immortalized, human lung epithelial cell line, has been used to model pulmonary epithelial function for over 30 years. The BEAS-2B phenotype can be modulated by culture conditions that include the presence or absence of fetal bovine serum (FBS). The popularity of BEAS-2B as a model of arsenic toxicology, and the common use of BEAS-2B cultured both with and without FBS, led us to investigate the impact of FBS on BEAS-2B in the context of arsenic toxicology. Comparison of genome-wide gene expression in BEAS-2B cultured with or without FBS revealed altered expression in several biological pathways, including those related to carcinogenesis and energy metabolism. Real-time measurements of oxygen consumption and glycolysis in BEAS-2B demonstrated that FBS culture conditions were associated with a 1.4-fold increase in total glycolytic capacity, a 1.9-fold increase in basal respiration, a 2.0-fold increase in oxygen consumed for ATP production and a 2.8-fold increase in maximal respiration, compared with BEAS-2B cultured without FBS. Comparisons of the transcriptome changes in BEAS-2B resulting from FBS exposure to the transcriptome changes resulting from exposure to 1 μM sodium arsenite revealed that mRNA levels of 43% of the arsenite-modulated genes were also modulated by FBS. Cytotoxicity studies revealed that BEAS-2B cells exposed to 5% FBS for 8 weeks were almost 5 times more sensitive to arsenite cytotoxicity than non-FBS-exposed BEAS-2B cells. Phenotype changes induced in BEAS-2B by FBS suggest that culture conditions should be carefully considered when using BEAS-2B as an experimental model of arsenic toxicity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4474793PMC
http://dx.doi.org/10.1002/jat.3094DOI Listing

Publication Analysis

Top Keywords

culture conditions
16
beas-2b
14
beas-2b cultured
12
cultured fbs
12
fbs
10
pulmonary epithelial
8
model arsenic
8
arsenic toxicology
8
fbs culture
8
transcriptome changes
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!