Cell-secreted matrices (CSMs), where extracellular matrix (ECM) deposited by monolayer cell cultures is decellularized, have been increasingly used to produce surfaces that may be reseeded with cells. Such surfaces are useful to help us understand cell-ECM interactions in a microenvironment closer to the in vivo situation than synthetic substrates with adsorbed proteins. We describe the production of CSMs from mouse primary osteoblasts (mPObs) exposed to cytokine challenge during matrix secretion, mimicking in vivo inflammatory environments. Time-of-flight secondary ion mass spectrometry data revealed that CSMs with cytokine challenge at day 7 or 12 of culture can be chemically distinguished from one another and from untreated CSM using multivariate analysis. Comparison of the differences with reference spectra from adsorbed protein mixtures points towards cytokine challenge resulting in a decrease in collagen content. This is supported by immunocytochemical and histological staining, demonstrating a 44% loss of collagen mass and a 32% loss in collagen I coverage. CSM surfaces demonstrate greater cell adhesion than adsorbed ECM proteins. When mPObs were reseeded onto cytokine-challenged CSMs they exhibited reduced adhesion and elongated morphology compared to untreated CSMs. Such changes may direct subsequent cell fate and function, and provide insights into pathological responses at sites of inflammation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4617835PMC
http://dx.doi.org/10.1016/j.actbio.2014.12.005DOI Listing

Publication Analysis

Top Keywords

cytokine challenge
12
extracellular matrix
8
secondary ion
8
ion mass
8
mass spectrometry
8
loss collagen
8
csms
5
revealing cytokine-induced
4
cytokine-induced changes
4
changes extracellular
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!