Chronic changes in the articular cartilage and meniscus following traumatic impact to the lapine knee.

J Biomech

Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, USA; School of Biomedical Engineering, Colorado State University, Fort Collins, CO, USA. Electronic address:

Published: January 2015

The objective of this study was to induce anterior cruciate ligament (ACL) and meniscal damage, via a single tibiofemoral compressive impact, in order to document articular cartilage and meniscal changes post-impact. Tibiofemoral joints of Flemish Giant rabbits were subjected to a single blunt impact that ruptured the ACL and produced acute meniscal damage. Animals were allowed unrestricted cage activity for 12 weeks before euthanasia. India ink analysis of the articular cartilage revealed higher degrees of surface damage on the impacted tibias (p=0.018) and femurs (p<0.0001) compared to controls. Chronic meniscal damage was most prevalent in the medial central and medial posterior regions. Mechanical tests revealed an overall 19.4% increase in tibial plateau cartilage thickness (p=0.026), 34.8% increase in tibial plateau permeability (p=0.054), 40.8% increase in femoral condyle permeability (p=0.029), and 20.1% decrease in femoral condyle matrix modulus (p=0.012) in impacted joints compared to controls. Both instantaneous and equilibrium moduli of the lateral and medial menisci were decreased compared to control (p<0.02). Histological analyses revealed significantly increased presence of fissures in the medial femur (p=0.036). In both meniscus and cartilage there was a significant decrease in GAG coverage for the impacted limbs. Based on these results it is clear that an unattended combined meniscal and ACL injury results in significant changes to the soft tissues in this experimental joint 12 weeks post-injury. Such changes are consistent with a clinical description of mid to late stage PTOA of the knee.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4286431PMC
http://dx.doi.org/10.1016/j.jbiomech.2014.11.038DOI Listing

Publication Analysis

Top Keywords

articular cartilage
12
meniscal damage
8
chronic changes
4
changes articular
4
cartilage meniscus
4
meniscus traumatic
4
traumatic impact
4
impact lapine
4
lapine knee
4
knee objective
4

Similar Publications

Bone marrow stimulation treatment by bone marrow stromal cells (BMSCs) released from the bone medullary cavity and differentiated into cartilage via microfracture surgery is a frequently employed technique for treating articular cartilage injuries, yet the treatment presents a main drawback of poor cartilage regeneration in the elderly. Prior research indicated that aging could decrease the stemness capacity of BMSCs, thus we made a hypothesis that increasing old BMSCs (OBMSCs) stemness might improve the results of microfracture in the elderly. First, we investigated the correlation between microfracture outcomes and BMSCs stemness using clinical data and animal experiments.

View Article and Find Full Text PDF

Background: Meniscal injuries that fail to heal instigate catabolic changes in the knee's microenvironment, posing a high risk for developing posttraumatic osteoarthritis (PTOA). Previous research has suggested that human cartilage-derived progenitor cells (hCPCs) can stimulate meniscal repair in a manner that depends on stromal cell-derived factor 1 (SDF-1) pathway activity.

Hypothesis: Overexpressing the SDF-1 receptor CXCR4 in hCPCs will increase cell trafficking and further improve the repair efficacy of meniscal injuries.

View Article and Find Full Text PDF

Advancements in Cartilage Tissue Engineering: A Focused Review.

J Biomed Mater Res B Appl Biomater

January 2025

Department of Mechanical Engineering, Cleveland State University, Cleveland, Ohio, USA.

Osteoarthritis (OA) is a prevalent joint disorder that is characterized by the degeneration of articular cartilage in synovial joints. Most of the current treatment options for this disorder tend to focus on symptom management rather than addressing the underlying progression of the disease. Cartilage tissue engineering has emerged as a promising approach to address the limitations of current OA treatments, aiming to regenerate cartilage and restore the natural function of affected joints.

View Article and Find Full Text PDF

Purpose Of Review: Knee osteoarthritis (OA) is a gradual deterioration of articular cartilage characterized by pain and physical dysfunction. Although analgesic pharmacological agents are the first-line treatment for knee OA, they are not effective for all patients. In this study, we evaluate the efficacy of an intra-articular injection treatment using platelet-rich plasma (PRP) in reducing pain and improving functional ability.

View Article and Find Full Text PDF

The activation of acid-sensing ion channel 1a (ASIC1a) in response to extracellular acidification leads to an increase in extracellular calcium influx, thereby exacerbating the degeneration of articular chondrocytes in rheumatoid arthritis (RA). It has been suggested that the inhibition of extracellular calcium influx could potentially impede chondrocyte ferroptosis. The cystine transporter, solute carrier family 7 member 11 (SLC7A11), is recognized as a key regulator of ferroptosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!