AI Article Synopsis

  • * Results showed the DSI achieved a classification accuracy of 0.75 overall, with higher accuracies for specific subgroups and patients with clear diagnostic information.
  • * The findings suggest that integrating multiple cognitive tests and biomarkers enhances the DSI's ability to accurately predict AD progression, distinguishing between clear and ambiguous cases.

Article Abstract

We evaluated the performance of the Disease State Index (DSI) method when predicting progression to Alzheimer's disease (AD) in patients with subjective cognitive impairment (SCI), amnestic or non-amnestic mild cognitive impairment (aMCI, naMCI). The DSI model measures patients' similarity to diagnosed cases based on available data, such as cognitive tests, the APOE genotype, CSF biomarkers and MRI. We applied the DSI model to data from the DESCRIPA cohort, where non-demented patients (N=775) with different subtypes of cognitive impairment were followed for 1 to 5 years. Classification accuracies for the subgroups were calculated with the DSI using leave-one-out crossvalidation. The DSI's classification accuracy in predicting progression to AD was 0.75 (AUC=0.83) in the total population, 0.70 (AUC=0.77) for aMCI and 0.71 (AUC=0.76) for naMCI. For a subset of approximately half of the patients with high or low DSI values, accuracy reached 0.86 (all), 0.78 (aMCI), and 0.85 (naMCI). For patients with MRI or CSF biomarker data available, theywere 0.78 (all), 0.76 (aMCI) and 0.76 (naMCI), while for clear cases the accuracies rose to 0.90 (all), 0.83 (aMCI) and 0.91 (naMCI). The results show that the DSI model can distinguish between clear and ambiguous cases, assess the severity of the disease and also provide information on the effectiveness of different biomarkers. While a specific test or biomarker may confound analysis for an individual patient, combining several different types of tests and biomarkers could be able to reveal the trajectory of the disease and improve the prediction of AD progression.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1567205012666141218123829DOI Listing

Publication Analysis

Top Keywords

cognitive impairment
16
predicting progression
12
dsi model
12
alzheimer's disease
8
disease state
8
namci dsi
8
disease
6
dsi
6
cognitive
5
amci
5

Similar Publications

Background: Cognitive impairment, colloquially termed "brain fog", is one of the most prevalent manifestations of post-Covid syndrome and a major contributor to impaired daily function and reduced quality of life. However, despite the high numbers of affected individuals presenting to clinical services with cognitive impairment, little work has been undertaken to date on the suitability of current memory clinic tests for identifying the cognitive deficits in this new acquired cognitive disorder.The aim of this study was therefore to determine the performance of people with post-Covid syndrome presenting with cognitive impairment on the Addenbrooke's Cognitive Examination-III (ACE-III), a cognitive test used widely in memory clinics.

View Article and Find Full Text PDF

Background: The Global prevalence of dementia is projected to rise, particularly in low and middle-income countries like Ghana. Mild cognitive impairment (MCI), an intermediate phase between normal cognitive aging and dementia, is characterized by an objective and subjective decline in cognitive abilities. Individuals with MCI have a greater likelihood of progression to dementia.

View Article and Find Full Text PDF

Many plants are reported to enhance cognition in amnesic-animal models. The metabolite profile of fruit methanolic extract (CDFME) was characterized by LC-QTOF-MS/MS, and its total phenolics content (TPC) and total flavonoids content (TFC) were determined. In parallel, its cognitive-enhancing effect on scopolamine (SCOP)-induced AD in rats was evaluated.

View Article and Find Full Text PDF

Background And Aim: Neurodegenerative disorders (e.g., Alzheimer's, Parkinson's) lead to neuronal loss; neurocognitive disorders (e.

View Article and Find Full Text PDF

Exosomes from IH- Induced bEnd3 Cells Promote OSA Cognitive Impairment via miR-20a-5p/MFN2 Mediated Pyroptosis of HT22 Cells.

Nat Sci Sleep

December 2024

Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People's Republic of China.

Background: OSA can cause cognitive impairment (CI). The aim of this study was to investigate whether miR-20a-5p in exosomes derived from bEnd3 cells with IH mediates intercellular crosstalk and induces CI through hippocampal neuronal cell pyroptosis.

Materials And Methods: BEnd3-derived exosomes were isolated from the normal oxygen control group (NC-EXOS) and IH group (IH-EXOS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: