In this paper we study the role of topology in DNA gel electrophoresis experiments via molecular dynamics simulations. The gel is modelled as a 3D array of obstacles from which half edges are removed at random with probability p, thereby generating a disordered environment. Changes in the microscopic structure of the gel are captured by measuring the electrophoretic mobility of ring polymers moving through the medium, while their linear counterparts provide a control system as we show they are insensitive to these changes. We show that ring polymers provide a novel, non-invasive way of exploiting topology to sense microscopic disorder. Finally, we compare the results from the simulations with an analytical model for the non-equilibrium differential mobility, and find a striking agreement between simulation and theory.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c4sm02324b | DOI Listing |
Nanomicro Lett
January 2025
Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, People's Republic of China.
Practical Zn metal batteries have been hindered by several challenges, including Zn dendrite growth, undesirable side reactions, and unstable electrode/electrolyte interface. These issues are particularly more serious in low-concentration electrolytes. Herein, we design a Zn salt-mediated electrolyte with in situ ring-opening polymerization of the small molecule organic solvent.
View Article and Find Full Text PDFMacromol Rapid Commun
January 2025
Department of Bioengineering, Imperial College London, South Kensington, London, SW7 2AZ, UK.
Intrinsically conductive polymers have garnered a great deal of attention for use in medical and bioelectronic applications. Despite this, challenges associated with the mechanical stability, processability, and fabrication of conducting polymers have limited their utility. To circumvent these limitations, thiophene substituted 2-oxazolines (2Ox) and 2-oxazines (2Ozi) are introduced, which can be polymerized to form a thermally stable and potentially melt-processable polymers as precursors for conductive polymers.
View Article and Find Full Text PDFACS Nano
January 2025
Leibniz Institute of Polymer Research, Dresden 01069, Germany.
Droplet evaporation on solid substrates is a ubiquitous phenomenon and is relevant in many natural and industrial processes. Whereas it has been reported that the evaporation process is sped up on soft substrates compared with that on hard substrates, no attempt has been made in exploring how substrate stretching affects droplet evaporation and evaporative deposition patterns. Here, we systematically investigate the contact line dynamics of droplets evaporating on substrates with different stiffnesses and stretching ratios and the structures of the evaporative deposition patterns of nanoparticles.
View Article and Find Full Text PDFBiomater Sci
January 2025
Department of Nanobiomedical Science & BK21 FOUR micropatterned shape-memory NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea.
A scaffold design for tendon regeneration has been proposed, which mimics the microstructural features of tendons and provides appropriate mechanical properties. We synthesized a temperature-triggered shape-memory polymer (SMP) using the ring-opening polymerization of polycaprolactone (PCL) with polyethylene glycol (PEG) as a macroinitiator. We fabricated a micropatterned patch using SMP capillary force lithography, which mimicked a native tendon, for providing physical cues and guiding effects.
View Article and Find Full Text PDFBeijing Da Xue Xue Bao Yi Xue Ban
February 2025
First Clinical Division, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Enginee-ring Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China.
Objective: To clarify the role of concentrated growth factors (CGF) in the treatment of periodontal cement defects using calcium phosphate cement (CPC) with self-curing properties.
Methods: Thirty-six intrabony defects were randomly divided into two groups. The experimental group received CGF+CPC treatment (=18), while the control group received CPC treatment alone (=18).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!