Sensing ion or ligand concentrations, physico-chemical conditions, and molecular dimerization or conformation change is possible by assays involving fluorescent lifetime imaging. The inherent low throughput of imaging impedes rigorous statistical data analysis on large cell numbers. We address this limitation by developing a fluorescence lifetime-measuring flow cytometer for fast fluorescence lifetime quantification in living or fixed cell populations. The instrument combines a time-correlated single photon counting epifluorescent microscope with microfluidics cell-handling system. The associated computer software performs burst integrated fluorescence lifetime analysis to assign fluorescence lifetime, intensity, and burst duration to each passing cell. The maximum safe throughput of the instrument reaches 3,000 particles per minute. Living cells expressing spectroscopic rulers of varying peptide lengths were distinguishable by Förster resonant energy transfer measured by donor fluorescence lifetime. An epidermal growth factor (EGF)-stimulation assay demonstrated the technique's capacity to selectively quantify EGF receptor phosphorylation in cells, which was impossible by measuring sensitized emission on a standard flow cytometer. Dual-color fluorescence lifetime detection and cell-specific chemical environment sensing were exemplified using di-4-ANEPPDHQ, a lipophilic environmentally sensitive dye that exhibits changes in its fluorescence lifetime as a function of membrane lipid order. To our knowledge, this instrument opens new applications in flow cytometry which were unavailable due to technological limitations of previously reported fluorescent lifetime flow cytometers. The presented technique is sensitive to lifetimes of most popular fluorophores in the 0.5-5 ns range including fluorescent proteins and is capable of detecting multi-exponential fluorescence lifetime decays. This instrument vastly enhances the throughput of experiments involving fluorescence lifetime measurements, thereby providing statistically significant quantitative data for analysis of large cell populations. © 2014 International Society for Advancement of Cytometry.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4440390PMC
http://dx.doi.org/10.1002/cyto.a.22616DOI Listing

Publication Analysis

Top Keywords

fluorescence lifetime
36
lifetime
11
fluorescence
10
lifetime flow
8
flow cytometry
8
energy transfer
8
fluorescent lifetime
8
data analysis
8
analysis large
8
large cell
8

Similar Publications

CQHC, a novel colorimetric fluorescent sensor, developed for the selective sensing of ions and well characterised, including SC-XRD. It demonstrated selective sensing for Co, Zn, Hg and F using absorbance titration at 420 nm, 446 nm and the binding constants estimated follows the order F > Co > Hg > Zn. On light of this, molecular logic gate was built for CQHC's selective multi-ion detection.

View Article and Find Full Text PDF

Preparation of carboxymethyl chitosan-Tb (CMCh-Tb) fluorescent probe: For high-sensitivity Cu detection and mechanism study.

Int J Biol Macromol

January 2025

Key Laboratory of Bio-based Material Science & Technology (Ministry of Education), Northeast Forestry University, Harbin 150040, China; College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China.

Carboxymethyl chitosan (CMCh) is a natural polysaccharide derivative with biodegradability, rich in active amino and carboxyl groups. It can act as a ligand to coordinate with rare earth ions, transferring absorbed energy to the central ion to sensitize its luminescence. In this paper, CMCh-Tb was prepared as a solid fluorescent probe by mixing CMCh solution with Tb.

View Article and Find Full Text PDF

Reconstructive Phase Transition Enables Abnormal Negative Thermal Quenching of Photoluminescence in a 1D Hybrid Perovskite.

Inorg Chem

January 2025

Jiangsu Key Laboratory for Biomaterials and Devices, State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 211189, PR China.

Organic-inorganic hybrid perovskites (OIHPs) have attracted enormous attention owing to their intriguing structural tunability and diverse functional properties. Reconstructive phase transitions, involving the breaking and reconstruction of chemical bonds, have rarely been found in such materials; however, these features may induce many intriguing physical properties in optics, ferroelectrics, ferromagnetics, and so forth. Here, we utilized the weak and switchable coordination bonds of HETMA-MnCl (HETMA = (2-hydroxyethyl) trimethylammonium) to construct a 1D hybrid perovskite employing a neutral framework.

View Article and Find Full Text PDF

Sub-cellular organelle anomalies are frequently observed in diseases such as cancer. Early and precise diagnosis of these alterations can be crucial for patient outcomes. However, current diagnostic tools using conventional organic dyes or metal quantum dots face limitations, including poor biocompatibility, stringent storage conditions, limited solubility in aqueous media, and slow staining speeds.

View Article and Find Full Text PDF

Circularly Polarized Room-Temperature Phosphorescence from Dye-Doped Cholesteric Liquid Crystalline Polymer Networks.

J Phys Chem Lett

January 2025

Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.

Circularly polarized luminescence (CPL) materials have drawn increasing attention for their potential applications in optical displays and chemo/biosensing. Nevertheless, the construction of circularly polarized room-temperature phosphorescence (CPRTP) materials is still a significant challenge. In this work, four liquid crystalline polymer network films with RTP properties have been fabricated via photopolymerization of cholesteric liquid-crystalline mixtures containing different amounts of commercially available dyes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!