LexA protein of cyanobacterium Anabaena sp. strain PCC7120 exhibits in vitro pH-dependent and RecA-independent autoproteolytic activity.

Int J Biochem Cell Biol

Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India. Electronic address:

Published: February 2015

AI Article Synopsis

Article Abstract

The LexA protein of the nitrogen-fixing cyanobacterium, Anabaena sp. strain PCC7120 exhibits a RecA-independent and alkaline pH-dependent autoproteolytic cleavage. The autoproteolytic cleavage of Anabaena LexA occurs at pH 8.5 and above, stimulated by the addition of Ca(2+) and in the temperature range of 30-57°C. Mutational analysis of Anabaena LexA protein indicated that the cleavage occurred at the peptide bond between Ala-84 and Gly-85, and optimal cleavage required the presence of Ser-118 and Lys-159, as also observed for LexA protein of Escherichia coli. Cleavage of Anabaena LexA was affected upon deletion of three amino acids, (86)GLI. These three amino acids are unique to all cyanobacterial LexA proteins predicted to be cleavable. The absence of RecA-dependent cleavage at physiological pH, which has not been reported for other bacterial LexA proteins, is possibly due to the absence of RecA interacting sites on Anabaena LexA protein, corresponding to the residues identified in E. coli LexA, and low cellular levels of RecA in Anabaena. Exposure to SOS-response inducing stresses, such as UV-B and mitomycin C neither affected the expression of LexA in Anabaena nor induced cleavage of LexA in either Anabaena 7120 or E. coli overexpressing Anabaena LexA protein. Though the LexA may be acting as a repressor by binding to the LexA box in the vicinity of the promoter region of specific gene, their derepression may not be via proteolytic cleavage during SOS-inducing stresses, unless the stress induces increase in cytoplasmic pH. This could account for the regulation of several carbon metabolism genes rather than DNA-repair genes under the regulation of LexA in cyanobacteria especially during high light induced oxidative stress.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biocel.2014.12.003DOI Listing

Publication Analysis

Top Keywords

lexa protein
24
anabaena lexa
20
lexa
16
anabaena
10
cyanobacterium anabaena
8
anabaena strain
8
strain pcc7120
8
pcc7120 exhibits
8
cleavage
8
autoproteolytic cleavage
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!