Parental care benefits offspring through maternal effects influencing their development, growth and survival. However, although parental care in general is likely the result of adaptive evolution, it does not follow that specific differences in the maternal effects that arise from care are also adaptive. Here, we used an interspecific cross-fostering design in the burying beetle species Nicrophorus orbicollis and N. vespilloides, both of which have elaborate parental care involving direct feeding of regurgitated food to offspring, to test whether maternal effects are optimized within a species and therefore adaptive. Using a full-factorial design, we first demonstrated that N. orbicollis care for offspring longer regardless of recipient species. We then examined offspring development and mass in offspring reared by hetero- or conspecific parents. As expected, there were species-specific direct effects independent of the maternal effects, as N. orbicollis larvae were larger and took longer to develop than N. vespilloides regardless of caregiver. We also found significant differences in maternal effects: N. vespilloides maternal care caused more rapid development of offspring of either species. Contrary to expectations if maternal effects were species-specific, there were no significant interactions between caretaker and recipient species for either development time or mass, suggesting that these maternal effects are general rather than optimized within species. We suggest that rather than coadaptation between parents and offspring performance, the species differences in maternal effects may be correlated with direct effects, and that their evolution is driven by selection on those direct effects.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4617319PMC
http://dx.doi.org/10.1111/jeb.12573DOI Listing

Publication Analysis

Top Keywords

maternal effects
36
differences maternal
16
effects
12
parental care
12
direct effects
12
maternal
11
species
8
species differences
8
maternal care
8
optimized species
8

Similar Publications

The study was designed to appraise the effects of early antibiotic administration on reproductive tract infections and fetal membrane cell scorching in instances of premature rupture of membranes (PROM). A total of 107 pregnant women diagnosed with PROM between July 2020 and June 2022 were randomly assigned to two groups: the Intervention (n=54), where ampicillin were administered within 24 hours of PROM onset, and the control group (n=53), where ampicillin were given 24-48 hours after PROM. Maternal and neonatal outcomes, incidence of reproductive tract infections, and fetal membrane cell scorching indicators (Caspase-1, Caspase -3, Caspase-9 and IL-β) were compared.

View Article and Find Full Text PDF

Objectives: SARS-CoV-2 infection is a known risk factor for adverse health outcomes in pregnancy, affecting both maternal and neonatal health. Mounting evidence suggests that even a single dose of an approved COVID-19 vaccine protects against severe SARS-CoV-2 infection and is safe for both pregnant persons and neonates. Southern Brazil was heavily affected by the COVID-19 pandemic, and the protective effects of the vaccine on maternal and neonatal health are not well described.

View Article and Find Full Text PDF

, an active component of Arnebia euchroma (Royle) Johnst., has remarkable pharmacological effects, particularly in its anti-tumour activity. Nonetheless, the specific targets and mechanisms of action remain to be further explored.

View Article and Find Full Text PDF

Benzophenone-3 (BP-3), commonly used as a UV filter in personal care products and as a stabilizer, is an alleged endocrine disruptor with potential neurodevelopmental impacts. Despite its abundance in the environment, the studies on its effect on brain development are scarce, especially in terms of multigenerational impact. In this work, for the first time, we examined neurotoxic and pro-apoptotic effects of BP-3 on mouse brain regions (cerebral cortex and hippocampus) in both the first (F) and second (F) generations after maternal exposure to environmentally relevant BP-3 levels.

View Article and Find Full Text PDF

Thyroid hormones (THs) require iodine for biosynthesis and play critical roles in brain development. Perchlorate is an environmental contaminant that reduces serum THs by blocking the uptake of iodine from the blood to the thyroid gland. Using a pregnant rodent model, we examined the impact of maternal exposure to perchlorate under conditions of dietary iodine deficiency (ID) on the brain and behavior of offspring.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!