Infusion, tincture and decoction of leaves of Zuccagnia punctata Cav. were assayed on growth of Fusarium verticillioides, F. graminearum sensu stricto, F. boothii, F. meridionale, F. subglutinans and F. thapsinum. The tincture showed the lowest IC50 on mycelial growth. A diethyl ether fraction of the tincture showed the highest antifungal activity in microdilution assays on F. verticillioides and F. graminearum. The antifungal constituents were separated by silica gel chromatography and identified as 2',4'-dihydroxychalcone, 2',4'-dihydroxy-3'-methoxychalcone and 7-hydroxy-3',4'-dimethoxyflavone. These chalcones had the lowest MIC and MFC values on F. verticillioides and F. graminearum sensu stricto. 2',4'-Dihydroxychalcone was mildly toxic and the remaining identified compounds were non-toxic in the brine shrimp assay. 2',4'-Dihydroxychalcone in mixtures with commercial food preservatives showed additive effects on F. graminearum sensu stricto and synergistic ones on F. verticillioides. 2',4'-Dihydroxy-3'-methoxychalcone showed synergistic effects in mixtures. Our results suggest that addition of chalcones to food preservatives allows reduction in the doses of the preservatives required for control of Fusarium species.

Download full-text PDF

Source

Publication Analysis

Top Keywords

verticillioides graminearum
12
graminearum sensu
12
sensu stricto
12
zuccagnia punctata
8
food preservatives
8
isolation identification
4
identification antifungal
4
antifungal compounds
4
compounds zuccagnia
4
punctata control
4

Similar Publications

Mycotoxins are toxins produced by various types of fungi, including , which can produce different types of mycotoxins, such as Deoxynivalenol (DON), Zearalenone, T-2 toxin, and Fumonisins (FUM). Mycotoxins have the potential to reduce the quality of crops and pose health risks to both humans and animals. This can result in reduced animal production and substantial economic consequences on a global scale.

View Article and Find Full Text PDF

Isolation and identification of six newly recorded wheat Fusarium crown rot associated species.

Plant Dis

December 2024

Shandong Academy of Agricultural Sciences, Institute of Plant Protection, No.202, Gongyebei Road, Jinan, Shandong, China, 250100;

Fusarium crown rot (FCR) has become one of the most serious diseases affecting wheat production worldwide. To date, many Fusarium species associated with wheat FCR disease have been reported. To gain a deeper understanding of Fusarium species diversity associated with wheat FCR, extensive research was conducted to identify different Fusarium species.

View Article and Find Full Text PDF

Maize-Fusarium associations and their mycotoxins: Insights from South Africa.

Fungal Biol

December 2024

Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa.

For maize, a staple food in South Africa, there is a lack of comprehensive knowledge on the mycotoxin-producing fungal diversity. In this study, a fungal community profile was established using culture-dependent methods for 56 maize seed samples that were also analysed for 13 mycotoxins. The fungal isolates were identified by morphology and DNA sequencing.

View Article and Find Full Text PDF

Pectin lyase is an industrially important enzyme, predominately used in fruit juice clarification and retting of fibers. It also promotes pathogenesis via the degradation of the pectin. The phytopathogen, Fusarium infects various crops and causes several diseases.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the damage caused by maize ear rot pathogens, focusing on their effects on maize roots and stalks, suggesting that these areas are critical in host-pathogen interactions.
  • Researchers isolated 43 pathogen strains from infected maize ears, identifying two dominant pathogens responsible for most ear rot symptoms.
  • Findings indicate that symptoms caused by one of the pathogens were more severe in stalk and root rot than in ear rot, highlighting the importance of roots and stalks as the main battleground for coevolution between maize and these pathogens.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!