Fluoxetine regulates neurogenesis in vitro through modulation of GSK-3β/β-catenin signaling.

Int J Neuropsychopharmacol

Department of Critical Care Medicine, Wuxi People's Hospital of Nanjing Medical University, Wuxi, China (Drs Hui and Yan); Department of Neurology, Wuxi People's Hospital of Nanjing Medical University, Wuxi, China (Drs J Zhang, Li, Mao, Shi, and Xi); Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC, Department of Cell and Neurobiology, University of Southern California, Los Angeles, CA (Drs Kim, Tong, and Ying); Department of Neurology, Affiliated ZhongDa Hospital of Southeast University, Nanjing, China (Dr Z Zhang).

Published: December 2014

AI Article Synopsis

  • Chronic treatment with antidepressants boosts neurogenesis in the hippocampus, but the specific molecular processes are not fully understood, with GSK-3β/β-catenin signaling emerging as a key player.
  • Fluoxetine, a selective serotonin reuptake inhibitor, enhances the growth of neural precursor cells by increasing the phosphorylation of GSK-3β and levels of nuclear β-catenin, which promotes cell proliferation.
  • The study finds that activating the 5-HT1A receptor is essential for fluoxetine's effects, as blocking this receptor diminishes the neurogenic response linked to the GSK-3β/β-catenin pathway.

Article Abstract

Background: It is generally accepted that chronic treatment with antidepressants increases hippocampal neurogenesis, but the molecular mechanisms underlying their effects are unknown. Recently, glycogen synthase kinase-3 beta (GSK-3β)/β-catenin signaling was shown to be involved in the mechanism of how antidepressants might influence hippocampal neurogenesis.

Methods: The aim of this study was to determine whether GSK-3β/β-catenin signaling is involved in the alteration of neurogenesis as a result of treatment with fluoxetine, a selective serotonin reuptake inhibitor. The mechanisms involved in fluoxetine's regulation of GSK-3β/β-catenin signaling pathway were also examined.

Results: Our results demonstrated that fluoxetine increased the proliferation of embryonic neural precursor cells (NPCs) by up-regulating the phosphorylation of Ser9 on GSK-3β and increasing the level of nuclear β-catenin. The overexpression of a stabilized β-catenin protein (ΔN89 β-catenin) significantly increased NPC proliferation, while inhibition of β-catenin expression in NPCs led to a significant decrease in the proliferation and reduced the proliferative effects induced by fluoxetine. The effects of fluoxetine-induced up-regulation of both phosphorylation of Ser9 on GSK-3β and nuclear β-catenin were significantly prevented by the 5-hydroxytryptamine-1A (5-HT1A) receptor antagonist WAY-100635.

Conclusions: The results demonstrate that fluoxetine may increase neurogenesis via the GSK-3β/β-catenin signaling pathway that links postsynaptic 5-HT1A receptor activation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4376550PMC
http://dx.doi.org/10.1093/ijnp/pyu099DOI Listing

Publication Analysis

Top Keywords

gsk-3β/β-catenin signaling
20
signaling involved
8
signaling pathway
8
phosphorylation ser9
8
ser9 gsk-3β
8
nuclear β-catenin
8
5-ht1a receptor
8
fluoxetine
5
gsk-3β/β-catenin
5
signaling
5

Similar Publications

Rac/Rop proteins, a kind of unique small GTPases in plants, play crucial roles in plant growth and development and in response to abiotic and biotic stresses. However, it is poorly understood whether cotton Rac/Rop protein genes are involved in mediating cotton resistance to Verticillium dahliae. Here, we focused on the function and mechanism of cotton Rac/Rop gene GhRac9 in the defense response to Verticillium dahliae infection.

View Article and Find Full Text PDF

Background: X-ray grating-based dark-field imaging can sense the small angle scattering caused by object's micro-structures. This technique is sensitive to the porous microstructure of lung alveoli and has the potential to detect lung diseases at an early stage. Up to now, a human-scale dark-field CT (DF-CT) prototype has been built for lung imaging.

View Article and Find Full Text PDF

Background: The hypobaric hypoxic atmosphere can cause adverse reactions or sickness. The purpose of this study was to explore the preventive effect and mechanism of human umbilical cord mesenchymal stem cells (hUC-MSCs) on acute pathological injury in mice exposed to high-altitude.

Methods: We pretreated C57BL/6 mice with hUC-MSCs via the tail vein injection, and then the mice were subjected to hypobaric hypoxic conditions for five days.

View Article and Find Full Text PDF

Inflammatory bone resorption represents a pathological condition marked by an increase in bone loss, commonly associated with chronic inflammatory conditions such as rheumatoid arthritis and periodontitis. Current therapies primarily focus on anti-inflammatory drugs and bisphosphonates; however, these treatments are limited due to side effects, inadequate efficacy, and unpredictable long-term complications. Kurarinone (KR), a bioactive compound isolated from the traditional Chinese herb Sophora flavescens, exhibits a range of biological activities, including anti-inflammatory, anticancer, and cardiovascular protective effects.

View Article and Find Full Text PDF

Direction selectivity is a fundamental feature in the visual system. In the retina, direction selectivity is independently computed by ON and OFF circuits. However, the advantages of extracting directional information from these two independent circuits are unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!