Background: Use of synthetic cathinones, which are designer stimulants found in "bath salts," has increased dramatically in recent years. Following governmental bans of methylenedioxypyrovalerone, mephedrone, and methylone, a second generation of synthetic cathinones with unknown abuse liability has emerged as replacements.
Methods: Using a discrete trials current intensity threshold intracranial self-stimulation procedure, the present study assessed the effects of 2 common second-generation synthetic cathinones, α-pyrrolidinopentiophenone (0.1-5 mg/kg) and 4-methyl-N-ethcathinone (1-100 mg/kg) on brain reward function. Methamphetamine (0.1-3 mg/kg) was also tested for comparison purposes.
Results: Results revealed both α-pyrrolidinopentiophenone and 4-methyl-N-ethcathinone produced significant intracranial self-stimulation threshold reductions similar to that of methamphetamine. α-Pyrrolidinopentiophenone (1 mg/kg) produced a significant maximal reduction in intracranial self-stimulation thresholds (~19%) most similar to maximal reductions produced by methamphetamine (1 mg/kg, ~20%). Maximal reductions in intracranial self-stimulation thresholds produced by 4-methyl-N-ethcathinone were observed at 30 mg/kg (~15%) and were comparable with those observed with methamphetamine and α-pyrrolidinopentiophenone tested at the 0.3-mg/kg dose (~14%). Additional analysis of the ED50 values from log-transformed data revealed the rank order potency of these drugs as methamphetamine ≈ α-pyrrolidinopentiophenone>4-methyl-N-ethcathinone.
Conclusions: These data suggest that the newer second-generation synthetic cathinones activate the brain reward circuitry and thus may possess a similar degree of abuse potential as prototypical illicit psychostimulants such as methamphetamine as well as the first generation synthetic cathinone methylenedioxypyrovalerone, as previously reported.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4368864 | PMC |
http://dx.doi.org/10.1093/ijnp/pyu014 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!