Bimodal frequency-modulated atomic force microscopy with small cantilevers.

Nanoscale

Center of Smart Interfaces, Technische Universität Darmstadt, Alarich-Weiss-Str. 10, 64287 Darmstadt, Germany.

Published: February 2015

Small cantilevers with ultra-high resonant frequencies (1-3 MHz) have paved the way for high-speed atomic force microscopy. However, their potential for multi-frequency atomic force microscopy is unexplored. Because small cantilevers have small spring constants but large resonant frequencies, they are well-suited for the characterisation of delicate specimens with high imaging rates. We demonstrate their imaging capabilities in a bimodal frequency modulation mode in constant excitation on semi-crystalline polypropylene. The first two flexural modes of the cantilever were simultaneously excited. The detected frequency shift of the first eigenmode was held constant for topographical feedback, whereas the second eigenmode frequency shift was used to map the local properties of the specimen. High-resolution images were acquired depicting crystalline lamellae of approximately 12 nm in width. Additionally, dynamic force curves revealed that the contrast originated from different interaction forces between the tip and the distinct polymer regions. The technique uses gentle forces during scanning and quantified the elastic moduli Eam = 300 MPa and Ecr = 600 MPa on amorphous and crystalline regions, respectively. Thus, multimode measurements with small cantilevers allow one to map material properties on the nanoscale at high resolutions and increase the force sensitivity compared with standard cantilevers.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c4nr05907gDOI Listing

Publication Analysis

Top Keywords

small cantilevers
16
atomic force
12
force microscopy
12
cantilevers small
8
resonant frequencies
8
frequency shift
8
force
5
small
5
cantilevers
5
bimodal frequency-modulated
4

Similar Publications

The adoption of pultruded glass fibre-reinforced polymer (pGFRP) composites as a substitute for traditional wooden cross-arms in high transmission towers represents a relatively novel approach. These materials were selected for their high strength-to-weight ratio and lightweight properties. Despite various studies focusing on structures improvement, there still have a significant gap in understanding the deformation characteristics of full-scale cross-arms under actual operational loads.

View Article and Find Full Text PDF

Microelectromechanical System Resonant Devices: A Guide for Design, Modeling and Testing.

Micromachines (Basel)

November 2024

Civil and Environmental Engineering Department, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy.

Microelectromechanical systems (MEMSs) are attracting increasing interest from the scientific community for the large variety of possible applications and for the continuous request from the market to improve performances, while keeping small dimensions and reduced costs. To be able to simulate a priori and in real time the dynamic response of resonant devices is then crucial to guide the mechanical design and to support the MEMSs industry. In this work, we propose a simplified modeling procedure able to reproduce the nonlinear dynamics of MEMS resonant devices of arbitrary geometry.

View Article and Find Full Text PDF

Purpose: The purpose of this study was to evaluate the biomechanical properties of SutureTape as an alternative technique for arthrodesis of the metacarpophalangeal (MCP) and proximal interphalangeal (PIP) joint arthrodesis when compared with surgical steel wire.

Methods: A total of 32 fingers (index, long, ring, and small) from two matched pair cadaveric hands were used. K-wire and surgical steel wire were used for MCP and PIP joint arthrodesis of the control group (group I), whereas K-wire and SutureTape were used for the experimental group (group II).

View Article and Find Full Text PDF

Advancement in piezoelectric nanogenerators for acoustic energy harvesting.

Microsyst Nanoeng

December 2024

Department of Computer and Information Engineering, Khalifa University, Abu Dhabi, 12778, UAE.

The demand for sustainable energy sources to power small electronics like IoT devices has led to exploring innovative solutions like acoustic energy harvesting using piezoelectric nanogenerators (PENGs). Acoustic energy harvesting leverages ambient noise, converting it into electrical energy through the piezoelectric effect, where certain materials generate an electric charge in response to mechanical stress or vibrations. This review paper provides a comprehensive analysis of the advancements in PENG technology, emphasizing their role in acoustic energy harvesting.

View Article and Find Full Text PDF

Gold Flake-Enabled Miniature Capacitive Picobalances.

Small Methods

December 2024

State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China.

Measurement of masses of microscale objects or weak force with ultrahigh sensitivity (down to nanogram/piconewton level) and compact configuration is highly desired for fundamental research and applications in various disciplines. Here, by using freestanding gold flakes with high reflectivity (≈98% at 980 nm) as the sample tray and silica microfibers with extremely low spring constant (≈0.05 mN m) as the cantilever beams, miniature capacitive balances are reported with piconewton-level detection limit (picobalances) and reliable radiation force-based calibration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!