Frontier molecular orbitals can be visualized and selectively set to achieve blue phosphorescent metal complexes. For this purpose, the HOMOs and LUMOs of tridentate Pt(II) complexes were measured using scanning tunneling microscopy and spectroscopy. The introduction of electron-accepting or -donating moieties enables independent tuning of the frontier orbital energies, and the measured HOMO-LUMO gaps are reproduced by DFT calculations. The energy gaps correlate with the measured and the calculated energies of the emissive triplet states and the experimental luminescence wavelengths. This synergetic interplay between synthesis, microscopy, and spectroscopy enabled the design and realization of a deep-blue triplet emitter. Finding and tuning the electronic "set screws" at molecular level constitutes a useful experimental method towards an in-depth understanding and rational design of optoelectronic materials with tailored excited state energies and defined frontier-orbital properties.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.201407439DOI Listing

Publication Analysis

Top Keywords

microscopy spectroscopy
8
scanning-tunneling-spectroscopy-directed design
4
design tailored
4
tailored deep-blue
4
deep-blue emitters
4
emitters frontier
4
frontier molecular
4
molecular orbitals
4
orbitals visualized
4
visualized selectively
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!