Probabilistic Air Segmentation and Sparse Regression Estimated Pseudo CT for PET/MR Attenuation Correction.

Radiology

From the Biomedical Research Imaging Center (Y.C., Y.Z.L., W.L., D.S., D.L., H.A.), Department of Radiology (Y.C., Y.Z.L., W.L., D.S., H.A.), and Department of Biomedical Engineering (M.J., Y.Z.L., W.L., D.L., H.A.), University of North Carolina at Chapel Hill, 106 Mason Farm Rd, CB 7513, Chapel Hill, NC 27599; and Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (Y.S., T.B., B.G.R.).

Published: May 2015

Purpose: To develop a positron emission tomography (PET) attenuation correction method for brain PET/magnetic resonance (MR) imaging by estimating pseudo computed tomographic (CT) images from T1-weighted MR and atlas CT images.

Materials And Methods: In this institutional review board-approved and HIPAA-compliant study, PET/MR/CT images were acquired in 20 subjects after obtaining written consent. A probabilistic air segmentation and sparse regression (PASSR) method was developed for pseudo CT estimation. Air segmentation was performed with assistance from a probabilistic air map. For nonair regions, the pseudo CT numbers were estimated via sparse regression by using atlas MR patches. The mean absolute percentage error (MAPE) on PET images was computed as the normalized mean absolute difference in PET signal intensity between a method and the reference standard continuous CT attenuation correction method. Friedman analysis of variance and Wilcoxon matched-pairs tests were performed for statistical comparison of MAPE between the PASSR method and Dixon segmentation, CT segmentation, and population averaged CT atlas (mean atlas) methods.

Results: The PASSR method yielded a mean MAPE ± standard deviation of 2.42% ± 1.0, 3.28% ± 0.93, and 2.16% ± 1.75, respectively, in the whole brain, gray matter, and white matter, which were significantly lower than the Dixon, CT segmentation, and mean atlas values (P < .01). Moreover, 68.0% ± 16.5, 85.8% ± 12.9, and 96.0% ± 2.5 of whole-brain volume had within ±2%, ±5%, and ±10% percentage error by using PASSR, respectively, which was significantly higher than other methods (P < .01).

Conclusion: PASSR outperformed the Dixon, CT segmentation, and mean atlas methods by reducing PET error owing to attenuation correction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4409527PMC
http://dx.doi.org/10.1148/radiol.14140810DOI Listing

Publication Analysis

Top Keywords

attenuation correction
16
probabilistic air
12
air segmentation
12
sparse regression
12
passr method
12
dixon segmentation
12
segmentation sparse
8
correction method
8
percentage error
8
segmentation atlas
8

Similar Publications

Curcumae Longae Rhizoma (CLRh), Curcumae Radix (CRa), and Curcumae Rhizoma (CRh), derived from the different medicinal parts of the species, are blood-activating analgesics commonly used for promoting blood circulation and relieving pain. Due to their certain similarities in chemical composition and pharmacological effects, these three herbs exhibit a high risk associated with mixing and indiscriminate use. The diverse methods used for distinguishing the medicinal origins are complex, time-consuming, and limited to intraspecific differentiation, which are not suitable for rapid and systematic identification.

View Article and Find Full Text PDF

Background: Central arterial stiffening is associated with brain white matter (WM) damage and gray matter (GM) volume loss in older adults, but little is known about this association from an adult lifespan perspective.

Purpose: To investigate the associations of central arterial stiffness with WM microstructural organization, WM lesion load, cortical thickness, and GM volume in healthy adults across the lifespan.

Study Type: This is a cross-sectional study.

View Article and Find Full Text PDF

Bone marrow transplantation reverses metabolic alterations in multiple sulfatase deficiency: a case series.

Commun Med (Lond)

January 2025

Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN, USA.

Background: Multiple sulfatase deficiency (MSD) is an exceptionally rare neurodegenerative disorder due to the absence or deficiency of 17 known cellular sulfatases. The activation of all these cellular sulfatases is dependent on the presence of the formylglycine-generating enzyme, which is encoded by the SUMF1 gene. Disease-causing homozygous or compound heterozygous variants in SUMF1 result in MSD.

View Article and Find Full Text PDF

Diagnostic Accuracy of Low-Dose Myocardial Perfusion Imaging in a Real-World Setting.

J Nucl Cardiol

January 2025

Université de Lorraine, CHRU-Nancy, Department of Nuclear Medicine and Nancyclotep Imaging Platform, F-54000, Nancy, France; Université de Lorraine, INSERM U1254, IADI, F-54000 Nancy, France. Electronic address:

Background: This large-scale study analyzes factors affecting diagnostic accuracy of low-dose myocardial perfusion imaging and correlation with coronary angiography in a real-world practice.

Methods: We compared data extracted from routine reports of (i) low-dose [Tc]sestamibi stress-MPI performed with no attenuation correction and predominantly exercise stress testing and (ii) the corresponding coronary angiography.

Results: We considered 1070 pairs of coronary angiography/stress-MPI results reported by 11 physicians.

View Article and Find Full Text PDF

: Orthognathic surgery is used to restore a correct anatomical and functional relationship between the jaws, with postoperative nasal septal deviation (NSD) being a common complication of Le Fort I osteotomy (LF-IO). The aim of this study was to evaluate the occurrence of NSD after LF-IO and to identify possible risk factors. : Pre- and postoperative cone beam computed tomography (CBCT) scans from 2018 to 2023 of 102 patients after LF-IO were analyzed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!