Although peptide catalysts have a high potential for the use as organocatalysts, the optimization of peptide sequences is laborious and time-consuming. To address this issue, a facile screening method for finding efficient aminocatalysts from a peptide library has been developed. In the screening for the Michael addition of a malonate to an enal, a dye-labeled product is immobilized on resin-bound peptides through reductive amination to visualize active catalysts. This procedure allows for the monitoring of the reactivity of entire peptides without modifying the resin beads beforehand. Peptides containing histidine at an appropriate position were identified by this method. A novel function of the histidyl residue, which enhances the binding of a substrate to the catalyst by capturing an iminium intermediate, was indicated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.201410268 | DOI Listing |
Parkinsonism Relat Disord
December 2024
Department of Translational Neuroscience and the Muhammad Ali Parkinson Center, Barrow Neurological Institute, Phoenix, AZ, USA.
The α-synuclein seed amplification assay (αSyn-SAA) sensitively detects Lewy pathology, the amyloid state of α-synuclein, in the cerebrospinal fluid (CSF) of patients with Parkinson's disease (PD). The αSyn-SAA harnesses the physics of seeding, whereby a superconcentrated solution of recombinant α-synuclein lowers the thermodynamic threshold (nucleation barrier) for aggregated α-synuclein to act as a nucleation catalyst ("seed") to trigger the precipitation (nucleation) of monomeric α-synuclein into pathology. This laboratory setup increases the signal for identifying a catalyst if one is present in the tissue examined.
View Article and Find Full Text PDFmBio
January 2025
Department of Microbiology, University of Illinois Urbana-Champaign, Champaign, Illinois, USA.
Methyl-coenzyme M reductase (MCR), the key catalyst in the anoxic production and consumption of methane, contains an unusual 2-methylglutamine residue within its active site. data show that a B12-dependent radical SAM (rSAM) enzyme, designated MgmA, is responsible for this post-translational modification (PTM). Here, we show that two different MgmA homologs are able to methylate MCR when expressed in , an organism that does not normally possess this PTM.
View Article and Find Full Text PDFMolecules
December 2024
College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao 266580, China.
As a key means to solve energy and environmental problems, photocatalytic technology has made remarkable progress in recent years. Organic semiconductor materials offer structural diversity and tunable energy levels and thus attracted great attention. Among them, porphyrin and its derivatives show great potential in photocatalytic reactions and light therapy due to their unique large-π conjugation structure, high apparent quantum efficiency, tailorable functionality, and excellent biocompatibility.
View Article and Find Full Text PDF3 Biotech
January 2025
Peptide and Medicinal Chemistry Research Laboratory, Department of Chemistry, Rani Channamma University, P-B, NH-4, Belagavi, 591 156 India.
Unlabelled: We have developed novel and sustainable homogeneous catalysts employing Glutamic acid (Glu) as a biodegradable and eco-friendly organocatalyst for the synthesis of -(4-oxo-2-phenyl-1,2-dihydroquinazolin-3(4)-yl)isonicotinamide derivatives (-) via multicomponent reactions (MCRs) of isatoic anhydride, isoniazid and heteroaromatic/aromatic aldehyde in ethanol on oil bath stirring at 60 °C. Selected final product homogeneity was examined by various spectroscopic techniques such as C-, H- NMR, FT-IR and LC-MS. For the first time, herein investigated electrochemical behavior of selected derivatives (-) using cyclic voltammetry method.
View Article and Find Full Text PDFChembiochem
December 2024
University of Minnesota, Department of Genetics, Cell Biology, and Development, MCB 5-130, 420 Washington Avenue SE, 55455, Minneapolis, UNITED STATES OF AMERICA.
RNA exhibits remarkable capacity as a functional polymer, with broader catalytic and ligand-binding capability than previously thought. Despite this, the low side chain diversity present in nucleic acids (two purines and two pyrimidines) relative to proteins (20+ side chains of varied charge, polarity, and chemical functionality) limits the capacity of functional RNAs to act as environmentally responsive polymers, as is possible for peptide-based receptors and catalysts. Here we show that incorporation of the modified nucleobase 2-thiouridine (2sU) into functional (aptamer and ribozyme) RNAs produces functionally inactivated polymers that can be activated by oxidative treatment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!