Hypoxia inhibits Cavin-1 and Cavin-2 expression and down-regulates caveolae in adipocytes.

Endocrinology

INSERM Unité 1065 (C.R., K.D., F.P., Y.L.M.-B., J.-F.T., M.C., S.G.-P.), C3M, Mediterranean Research Centre for Molecular Medicine, Team 7 (Cellular and Molecular Physiopathology of Obesity and Diabetes), Unité de Formation et de Recherche (UFR) Medicine (C.R., K.D., F.P., P.P., S.B., Y.L.M.-B., A.T., P.G., J.-F.T., M.C., S.G.-P.), and INSERM Unité 1065 (S.B., A.T., P.G.), C3M, Mediterranean Research Centre for Molecular Medicine, Team 8 (Hepatic Complications in Obesity),University of Nice, Sophia Antipolis F-06204 Nice, France; Centre Commun de Microscopie Appliquée (S.L.-G.), University of Nice, Sophia Antipolis, UFR Sciences, Parc Valrose, F-06108 Nice, France; Unité Mixte de Recherche Centre National de la Recherche Scientifique 7277 (P.P.), Unité Mixte de Recherche INSERM Unité 1091, UFR Medicine, F-06107 Nice, France; Centre Hospitalier Universitaire de Nice, Digestive Center (S.B., A.T.), Nice F-06202, Cedex 3, France; INSERM Unité Mixte de Recherche S872 (I.D.), Centre de Recherche des Cordeliers, Eq8, F-75006 Paris, France; INSERM Unité 1063 (S.L.L.), Stress Oxydant et Pathologies Métaboliques, Institut de Biologie en Santé, F-49933 Angers, France; and INSERM Unité Mixte de Recherche 1048 (P.V.), Institut des Maladies Métaboliques et Cardiovasculaires, Université Paul Sabatier, F-31432 Toulouse, France.

Published: March 2015

During obesity, a hypoxic state develops within the adipose tissue, resulting in insulin resistance. To understand the underlying mechanism, we analyzed the involvement of caveolae because they play a crucial role in the activation of insulin receptors. In the present study, we demonstrate that in 3T3-L1 adipocytes, hypoxia induces the disappearance of caveolae and inhibits the expression of Cavin-1 and Cavin-2, two proteins necessary for the formation of caveolae. In mice, hypoxia induced by the ligature of the spermatic artery results in the decrease of cavin-1 and cavin-2 expression in the epididymal adipose tissue. Down-regulation of the expression of cavins in response to hypoxia is dependent on hypoxia-inducible factor-1. Indeed, the inhibition of hypoxia-inducible factor-1 restores the expression of cavins and caveolae formation. Expression of cavins regulates insulin signaling because the silencing of cavin-1 and cavin-2 impairs insulin signaling pathway. In human, cavin-1 and cavin-2 are decreased in the sc adipose tissue of obese diabetic patients compared with lean subjects. Moreover, the expression of cavin-2 correlates negatively with the homeostatic model assessment index of insulin resistance and glycated hemoglobin level. In conclusion, we propose a new mechanism in which hypoxia inhibits cavin-1 and cavin-2 expression, resulting in the disappearance of caveolae. This leads to the inhibition of insulin signaling and the establishment of insulin resistance.

Download full-text PDF

Source
http://dx.doi.org/10.1210/en.2014-1656DOI Listing

Publication Analysis

Top Keywords

cavin-1 cavin-2
24
cavin-2 expression
12
adipose tissue
12
insulin resistance
12
expression cavins
12
insulin signaling
12
hypoxia inhibits
8
inhibits cavin-1
8
expression
8
disappearance caveolae
8

Similar Publications

Caveolae, specialized and dynamic subdomains of the plasma membrane, have a crucial role in diverse cellular functions encompassing endocytosis, signal transduction, mechanosensation, lipid storage, and metabolism. Cavin family proteins are indispensable for caveolar formation and function. An increasing number of studies have found that cavins are involved in tumor growth, invasion, metastasis, and angiogenesis and may have dual roles in the regulation of cancer.

View Article and Find Full Text PDF

Breast cancer has become the most significant malignant tumor threatening women's lives. Caveolae are concave pits formed by invagination of the plasma membrane that participate in many biological functions of the cell membrane, such as endocytosis, cell membrane assembly, and signal transduction. In recent years, Caveolae family-related proteins have been found to be closely related to the occurrence and development of breast cancer.

View Article and Find Full Text PDF

Testosterone improved erectile function by upregulating transcriptional expression of growth factors in late androgen replacement therapy model rats.

Int J Impot Res

June 2024

Department of Clinical Pharmaceutics, Graduate School of Medical Sciences, Nagoya City University, 1-Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan.

We previously showed that castration of rats reduced erectile function over time; when testosterone replacement therapy was started 4 weeks after castration, erectile function improved. In this study, we examined the mechanism of improvement in erectile function following testosterone replacement therapy in rats. Thirty 12-week-old rats were divided into castrated (Cast), castrated with subcutaneous administration of testosterone (Cast + T), and sham (Sham) groups.

View Article and Find Full Text PDF

Background: The fatality rate of acute lung injury (ALI) is as high as 40% to 60%. Although various factors, such as sepsis, trauma, pneumonia, burns, blood transfusion, cardiopulmonary bypass, and pancreatitis, can induce ALI, patients with these risk factors will eventually develop ALI. The rate of developing ALI is not high, and the outcomes of ALI patients vary, indicating that it is related to genetic differences between individuals.

View Article and Find Full Text PDF

Background: Caveolae are plasma membrane subdomains of many mammalian cells that play critical roles in cellular processes, including endocytosis, signal transduction and tumorigenesis. Cavin proteins are essential for caveola formation, structure and function and are reported to be involved in various human diseases, but little is known about their expression and prognostic value in leukemia.

Methods: We performed a detailed analysis of Cavin family mRNA expression levels in different cancer tissues vs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!