Behavioral symptoms, such as anxiety, are widely reported after blast overpressure (BOP) exposure. Amygdalar vulnerability to increasing magnitudes of BOP has not been investigated, and single exposures to blast have been limited to acute (<72 h) assessment. Rats were exposed to a single low, moderate, or high BOP (10, 14, or 24 psi) with an advanced blast simulator to test the susceptibility of the amygdala. Anxiety-like behavior was observed in the low- and moderate-pressure groups when subjected to the light/dark box assessment 7 days after the blast but not in high-pressure group. Immunohistochemistry was performed to measure apoptosis (cleaved caspase-3), neuronal loss (NeuN), reactive astrocytes (glial fibrillary acidic protein), microglia (Iba-1), and oxidative stress (CuZn superoxide dismutase). Slower progression of injury cascades was associated with a significant increase in anxiety, apoptosis, and astrogliosis in the low pressure group compared with others. A significant increase of CuZn superoxide dismutase in the low pressure group could be associated with neuroprotection from cell death caused by oxidative stress because neuronal loss was significant in the moderate- and high- but not the low-pressure group. Overall, this study demonstrated that overpressure as low as 10 psi can induce subacute anxiety, in addition to neuropathologic changes in the amygdala.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/SHK.0000000000000311 | DOI Listing |
J Community Hosp Intern Med Perspect
January 2025
Internal Medicine Residency Program, Luminis Health Anne Arundel Medical Center, Annapolis, MD, USA.
Nitrous oxide (NO) has been increasingly used for recreational purposes due to its dissociative and euphoric properties. Exposure to NO results in the deactivation of in vivo vitamin B, leading to subsequent neurological sequelae due to vitamin B deficiency.7 Current management focuses on cessation of exposure and replacement therapy, yet patients may continue to suffer from permanent neurological damage.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, No. 232, East Waihuan Road, Guangzhou Higher Education Mega Centre, Panyu District, Guangzhou 510006, China.
Epidemiological studies prove that type II diabetes, characterized by insulin resistance (IR), may be caused by fine particulate matter 2.5 (PM2.5).
View Article and Find Full Text PDFEnviron Int
January 2025
Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, 210009, China.
Polystyrene nanoplastics (PS-NPs) are omnipresent in the air and can be inhaled by humans. However, their long-term adverse implications and toxicological mechanisms for human respiratory health are unclear. Therefore, this study aims to provide new insights into the pulmonary toxicity of PS-NPs using mice and organoid models.
View Article and Find Full Text PDFNeurol Res Pract
January 2025
Department of Vascular Neurology, University Hospital Bonn, Bonn, Germany.
Background: Nitrous oxide (N₂O), commonly known as laughing gas, is widely recognized for its anesthetic and analgesic effects, and is frequently used in medical contexts. However, its misuse can lead to significant neurological complications, which are often under-recognized in clinical practice. Recent data on such cases in Germany are rare.
View Article and Find Full Text PDFJ Ethnopharmacol
January 2025
Biochemistry Department, Center of Biosciences, Universidade Federal de Pernambuco, Recife, Brazil; Center for Therapeutic Innovation Suely Galdino (NUPIT-SG), Universidade Federal de Pernambuco, Recife, Brazil. Electronic address:
Ethnopharmacological Relevance: Anxiety and depression are leading causes of disability worldwide, often exacerbated by chronic stress. Schinus terebinthifolia Raddi. has been used in traditional medicine for several purposes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!