A sulfate-crosslinked chitosan (SCC) was prepared for effective detoxification of hexavalent chromium (Cr(VI)) from effluents. SCC was characterized using Fourier transform infrared, X-ray diffraction, scanning electron microscopy and energy dispersive X-ray studies. The maximum adsorption of Cr(VI) was observed at pH 6.0 with adsorption capacity of 157 mg/g in accordance with the Langmuir adsorption isotherm model. The adsorption process was found to follow the pseudo-second-order rate kinetics. From the study of various thermodynamic parameters (Gibbs energy, entropy and enthalpy changes), the adsorption capacity was found to decrease with increase in temperature. Column studies were carried out to obtain a breakthrough point of the adsorbent. The adsorbent was regenerated using sodium hydroxide with no change in the adsorption efficiency for up to 10 cycles. Effect of diverse ions on adsorption efficiency was studied and SCC was applied for Cr(VI) removal in synthetic effluents.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2166/wst.2014.455 | DOI Listing |
Chemosphere
January 2025
St. Petersburg Federal Research Center of the Russian Academy of Sciences (SPC RAS), Scientific Research Centre for Ecological Safety of the Russian Academy of Sciences, 18, Korpusnaya st., St. Petersburg, 197110, Russia.
Harmful cyanobacterial blooms (HCB) have become a common issue in freshwater worldwide. Biological methods for controlling HCB are relatively cost effective and environmentally friendly. The strain of ascomycete GF6 was isolated from a water sample collected from the estuarine zone of the eastern part of the Gulf of Finland.
View Article and Find Full Text PDFChem Biol Interact
January 2025
College of Chemistry and Materials, Jiangxi Normal University, Nanchang, 330022, China. Electronic address:
As a replacement of bisphenol A, bisphenol S (BPS) is commonly used in the wrappers and food containers of daily life. Epidemiological studies demonstrate a close link between BPS exposure and vascular diseases, where the biological activities of BPS remain scarcely known. Herein, the effects of BPS on endothelial function as well as the underlying mechanism were investigated in human umbilical vein endothelial cells (HUVECs) and mouse arteries.
View Article and Find Full Text PDFArch Microbiol
January 2025
Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Jalan, UMS, 88400, Kota Kinabalu, Sabah, Malaysia.
The agricultural productivity and world-wide food security is affected by different phytopathogens, in which Fusarium is more destructive affecting more than 150 crops, now got resistance against many fungicides that possess harmful effects on environment such as soil health, air pollution, and human health. Fusarium fungicide resistance is an increasing concern in agricultural and environmental contexts, requiring a thorough understanding of its causes, implications, and management approaches. The mechanisms of fungicide resistance in Fusarium spp.
View Article and Find Full Text PDFInt J Oncol
February 2025
Department of Pathology, GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Center, 6229HX Maastricht, The Netherlands.
Human papillomavirus (HPV)‑positive and -negative head and neck squamous cell carcinoma (HNSCC) are often associated with activation of the phosphatidylinositol 3‑kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway due to mutations or amplifications in , loss of or activation of receptor tyrosine kinases. In HPV‑negative tumors, (encoding p16 protein) inactivation or (encoding Cyclin D1 protein) amplification frequently results in sustained cyclin‑dependent kinase (CDK) 4/6 activation. The present study aimed to investigate the efficacy of the CDK4/6 inhibitors (CDKi) palbociclib and ribociclib, and the PI3K/Akt/mTOR pathway inhibitors (PI3Ki) gedatolisib, buparlisib and alpelisib, in suppressing cell viability of HPV‑positive and ‑negative HNSCC cell lines.
View Article and Find Full Text PDFNat Commun
January 2025
Center for Integrative Genomics, University of Lausanne, Faculty of Biology and Medicine, Lausanne, Switzerland.
The energetic demands of proliferating cells during tumorigenesis require close coordination between the cell cycle and metabolism. While CDK4 is known for its role in cell proliferation, its metabolic function in cancer, particularly in triple-negative breast cancer (TNBC), remains unclear. Our study, using genetic and pharmacological approaches, reveals that CDK4 inactivation only modestly impacts TNBC cell proliferation and tumor formation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!