Background: Research on children's word structure development is limited. Yet, phonological intervention aims to accelerate the acquisition of both speech-sounds and word structure, such as word length, stress or shapes in CV sequences. Until normative studies and meta-analyses provide in-depth information on this topic, smaller investigations can provide initial benchmarks for clinical purposes.
Aims: To provide preliminary reference data for word structure development in a variety of Spanish with highly restricted coda use: Granada Spanish (similar to many Hispano-American varieties). To be clinically applicable, such data would need to show differences by age, developmental typicality and word structure complexity. Thus, older typically developing (TD) children were expected to show higher accuracy than younger children and those with protracted phonological development (PPD). Complex or phonologically marked forms (e.g. multisyllabic words, clusters) were expected to be late developing.
Methods & Procedures: Participants were 59 children aged 3-5 years in Granada, Spain: 30 TD children, and 29 with PPD and no additional language impairments. Single words were digitally recorded by a native Spanish speaker using a 103-word list and transcribed by native Spanish speakers, with confirmation by a second transcriber team and acoustic analysis. The program Phon 1.5 provided quantitative data.
Outcomes & Results: In accordance with expectations, the TD and older age groups had better-established word structures than the younger children and those with PPD. Complexity was also relevant: more structural mismatches occurred in multisyllabic words, initial unstressed syllables and clusters. Heterosyllabic consonant sequences were more accurate than syllable-initial sequences. The most common structural mismatch pattern overall was consonant deletion, with syllable deletion most common in 3-year-olds and children with PPD.
Conclusions & Implications: The current study provides preliminary reference data for word structure development in a Spanish variety with restricted coda use, both by age and types of word structures. Between ages 3 and 5 years, global measures (whole word match, word shape match) distinguished children with typical versus protracted phonological development. By age 4, children with typical development showed near-mastery of word structures, whereas 4- and 5-year-olds with PPD continued to show syllable deletion and cluster reduction, especially in multisyllabic words. The results underline the relevance of multisyllabic words and words with clusters in Spanish phonological assessment and the utility of word structure data for identification of protracted phonological development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/1460-6984.12133 | DOI Listing |
ISA Trans
January 2025
State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China. Electronic address:
This paper addresses the critical challenge of interpretability in machine learning methods for machine fault diagnosis by introducing a novel ad hoc interpretable neural network structure called Sparse Temporal Logic Network (STLN). STLN conceptualizes network neurons as logical propositions and constructs formal connections between them using specified logical operators, which can be articulated and understood as a formal language called Weighted Signal Temporal Logic. The network includes a basic word network using wavelet kernels to extract intelligible features, a transformer encoder with sparse and structured neural attention to locate informative signal segments relevant to decision-making, and a logic network to synthesize a coherent language for fault explanation.
View Article and Find Full Text PDFBrain Lang
January 2025
Department of Linguistics, Graduate School of Arts & Letters, Tohoku University, Sendai, Japan. Electronic address:
This study examines the neural mechanisms behind integrating syntactic and information structures during sentence comprehension using functional Magnetic Resonance Imaging. Focusing on Japanese sentences with canonical (SOV) and non-canonical (OSV) word orders, the study revealed distinct neural networks responsible for processing these linguistic structures. The left opercular part of the inferior frontal gyrus, left premotor area, and left posterior superior/middle temporal gyrus were primarily involved in syntactic processing.
View Article and Find Full Text PDFMicrob Ecol
January 2025
MikroIker Research Group, Immunology, Microbiology and Parasitology Department, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Paseo de La Universidad 7, 01006, Vitoria-Gasteiz, Spain.
The Añana Salt Valley (northern Spain) is a continental saltern consisting of a series of natural springs that have been used for salt production for at least 7000 years. This habitat has been relatively understudied; therefore, prokaryotic diversity was investigated through Illumina-based 16S rRNA gene sequencing to determine if the waters within the valley exhibit distinctive microbiological characteristics. Two main types of water were found in the valley: salty (approximately 200 g/L salinity) from the diapiric structure and brackish (≤ 20 g/L salinity) from shallow streams.
View Article and Find Full Text PDFDev Cogn Neurosci
December 2024
Child Mind Institute, New York, NY, USA; Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, OH, USA. Electronic address:
A left-lateralized cortical reading circuit underlies successful reading and fails to engage in individuals with reading problems. Studies identifying this circuit included youth from economically advantaged backgrounds and focused on cortical, not subcortical, structures. However, among youth with low scores on reading tests who are living in the context of economic disadvantage, this brain network is actively engaged during reading, despite persistent reading problems.
View Article and Find Full Text PDFJ Cheminform
January 2025
Department of Life Science Informatics and Data Science, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry, University of Bonn, Friedrich-Hirzebruch-Allee 5/6, 53115, Bonn, Germany.
Analogue series (AS) are generated during compound optimization in medicinal chemistry and are the major source of structure-activity relationship (SAR) information. Pairs of active AS consisting of compounds with corresponding substituents and comparable potency progression represent SAR transfer events for the same target or across different targets. We report a new computational approach to systematically search for SAR transfer series that combines an AS alignment algorithm with context-depending similarity assessment based on vector embeddings adapted from natural language processing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!