Background: Acute respiratory distress syndrome (ARDS) is characterized by the increased pulmonary permeability secondary to diffuse alveolar inflammation and injuries of several origins. Especially, the distinction between a direct (pulmonary injury) and an indirect (extrapulmonary injury) lung injury etiology is gaining more attention as a means of better comprehending the pathophysiology of ARDS. However, there are few reports regarding the quantitative methods distinguishing the degree of pulmonary permeability between ARDS patients due to pulmonary injury and extrapulmonary injury.
Methods: A prospective, observational, multi-institutional study was performed in 23 intensive care units of academic tertiary referral hospitals throughout Japan. During a 2-year period, all consecutive ARDS-diagnosed adult patients requiring mechanical ventilation were collected in which three experts retrospectively determined the pathophysiological mechanisms leading to ARDS. Patients were classified into two groups: patients with ARDS triggered by extrapulmonary injury (ARDSexp) and those caused by pulmonary injury (ARDSp). The degree of pulmonary permeability using the transpulmonary thermodilution technique was obtained during the first three intensive care unit (ICU) days.
Results: In total, 173 patients were assessed including 56 ARDSexp patients and 117 ARDSp patients. Although the Sequential Organ Failure Assessment (SOFA) score was significantly higher in the ARDSexp group than in the ARDSp group, measurements of the pulmonary vascular permeability index (PVPI) were significantly elevated in the ARDSp group on all days: at day 0 (2.9 ± 1.3 of ARDSexp vs. 3.3 ± 1.3 of ARDSp, p = .008), at day 1 (2.8 ± 1.5 of ARDSexp vs. 3.2 ± 1.2 of ARDSp, p = .01), at day 2 (2.4 ± 1.0 of ARDSexp vs. 2.9 ± 1.3 of ARDSp, p = .01). There were no significant differences in mortality at 28 days, mechanical ventilation days, and hospital length of stay between the two groups.
Conclusions: The results of this study suggest the existence of several differences in the increased degree of pulmonary permeability between patients with ARDSexp and ARDSp.
Trial Registration: This report is a sub-group analysis of the study registered with UMIN-CTR (IDUMIN000003627).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4267584 | PMC |
http://dx.doi.org/10.1186/2052-0492-2-24 | DOI Listing |
Disorders in pulmonary vascular integrity are a prominent feature in many lung diseases. Paracrine signaling is highly enriched in the lung and plays a crucial role in regulating vascular homeostasis. However, the specific local cell-cell crosstalk signals that maintain pulmonary microvascular stability in adult animals and humans remain largely unexplored.
View Article and Find Full Text PDFInt J Antimicrob Agents
January 2025
School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Institute of Drug Discovery, State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, China; China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, China; University of Chinese Academy of Science, Beijing, China; Guangzhou National Laboratory, Guangzhou, China. Electronic address:
Mycobacterium abscessus (Mab) poses serious therapeutic challenges, largely due to its intrinsic resistance to many antibiotics. The development of targeted therapeutic strategies necessitates the identification of bacterial factors that contribute to its reduced susceptibility to antibiotics and/or to the killing by its host cells. In this study, we discovered that Mab strains with disrupted mtrA, mtrB or both, or a gene-edited mtrA encoding MtrA with Tyr102Cys mutation, exhibited highly increased sensitivity to various drugs compared to the wild-type Mab.
View Article and Find Full Text PDFAm J Respir Cell Mol Biol
January 2025
Duke Medicine, Medicine, Durham, North Carolina, United States.
Becoming more frequent due to climate change, ozone (O) exposures can cause lung injury. Alveolar type 2 (AT2) cells and hyaluronan (HA), a matrix component, are critical to repairing lung injury and restoring homeostasis. Here, we define the impact of HA on AT2 cells following acute O exposure.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2025
Division of Pharmaceutical Technology, Defence Research Laboratory, DRDO, Tezpur, Assam, 784001, India. Electronic address:
Acute lung injury (ALI) and its severe form, acute respiratory distress syndrome (ARDS), is a clinical syndrome that can cause pulmonary edema, inflammation, oxidative stress, and immunological dysregulations. β-Caryophyllene (BCP), a natural bicyclic sesquiterpene, possesses a variety of pharmacological properties and has the potential to be a therapeutic agent. This study aimed to comprehend the effect of BCP on Nrf2/HO-1/NF-κB and ACE2/MasR axis in a rat model of ALI by lipopolysaccharide (LPS) and the underlying mechanisms during this process.
View Article and Find Full Text PDFInt Immunopharmacol
January 2025
Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China; Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin Nankai Hospital, Tianjin, China. Electronic address:
During the process of acute lung injury (ALI) associated with sepsis, the α7nAChR in the cholinergic anti-inflammatory pathway (CAP) plays a crucial role. However, the roles of electroacupuncture (EA) and specialized pro-resolving mediators (SPMs) in this context remain unclear. In this study, we demonstrated that EA activates CAP via α7nAChR, reducing lung permeability and inflammatory cytokine release.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!