Background: The rapid decline in use of conventional total hip replacement with a large femoral head size and a metal-on-metal bearing surface might lead to increased popularity of ceramic-on-ceramic bearings as another hard-on-hard alternative that allows implantation of a larger head. We sought to address comparative effectiveness of ceramic-on-ceramic and metal-on-HXLPE (highly cross-linked polyethylene) implants by utilizing the distributed health data network of the ICOR (International Consortium of Orthopaedic Registries), an unprecedented collaboration of national and regional registries and the U.S. FDA (Food and Drug Administration).
Methods: A distributed health data network was developed by the ICOR and used in this study. The data from each registry are standardized and provided at a level of aggregation most suitable for the detailed analysis of interest. The data are combined across registries for comprehensive assessments. The ICOR coordinating center and study steering committee defined the inclusion criteria for this study as total hip arthroplasty performed without cement from 2001 to 2010 in patients forty-five to sixty-four years of age with osteoarthritis. Six national and regional registries (Kaiser Permanente and HealthEast in the U.S., Emilia-Romagna region in Italy, Catalan region in Spain, Norway, and Australia) participated in this study. Multivariate meta-analysis was performed with use of linear mixed models, with survival probability as the unit of analysis. We present the results of the fixed-effects model and include the results of the random-effects model in an appendix. SAS version 9.2 was used for all analyses. We first compared femoral head sizes of >28 mm and ≤28 mm within ceramic-on-ceramic implants and then compared ceramic-on-ceramic with metal-on-HXLPE.
Results: A total of 34,985 patients were included; 52% were female. We found a lower risk of revision associated with use of ceramic-on-ceramic implants when a larger head size was used (HR [hazard ratio] = 0.73, 95% CI [confidence interval] = 0.60 to 0.88, p = 0.001). Use of smaller-head-size ceramic-on-ceramic bearings was associated with a higher risk of failure compared with metal-on-HXLPE bearings (HR = 1.36, 95% CI = 1.09 to 1.68, p = 0.006). Use of large-head-size ceramic-on-ceramic bearings was associated with a small protective effect relative to metal-on-HXLPE bearings (not subdivided by head size) in years zero to two, but this difference dissipated over the longer term.
Conclusions: Our multinational study based on a harmonized, distributed network showed that use of ceramic-on-ceramic implants with a smaller head size in total hip arthroplasty without cement was associated with a higher risk of revision compared with metal-on-HXLPE and >28-mm ceramic-on-ceramic implants. These findings warrant careful reflection by regulatory and clinical communities and wide dissemination to patients for informed decision-making regarding such surgery.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4271430 | PMC |
http://dx.doi.org/10.2106/JBJS.N.00465 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!