Albumin and its application in drug delivery.

Expert Opin Drug Deliv

Biopharma R&D, Novozymes Biopharma UK Ltd. , Castle Court, 59 Castle Boulevard, Nottingham, NG7 1FD , UK +44 115 9551286 ; +44 115 9551299 ;

Published: May 2015

Introduction: Rapid clearance of drugs from the body results in short therapeutic half-life and is an integral property of many protein and peptide-based drugs. To maintain the desired therapeutic effect patients are required to administer higher doses more frequently, which is inconvenient and risks undesirable side effects. Drug delivery technologies aim to minimise the number of administrations and dose-related toxicity while maximising therapeutic efficacy.

Areas Covered: This review describes albumin's inherent biochemical and biophysical properties, which make it an attractive drug delivery platform and the developmental status of drugs that are associated, conjugated or genetically fused with albumin. Albumin interacts with a number of cell surface receptors including gp18, gp30, gp60, FcRn, cubilin and megalin. The importance of albumin's interaction with the FcRn receptor, the basis for albumin's long circulatory half-life, is described, as are engineered albumins with improved pharmacokinetics. Albumin naturally accumulates at tumours and sites of inflammation, a characteristic which can be augmented by the addition of targeting ligands. The development of albumin drug conjugates which reply upon this property is described.

Expert Opinion: Albumin's inherent biochemical and biophysical properties make it an ideal drug delivery platform. Recent advances in our understanding of albumin physiology and the improvement in albumin-based therapies strongly suggest that albumin-based therapies have a significant advantage over alternative technologies in terms of half-life, stability, versatility, safety and ease of manufacture. Given the importance of the albumin:FcRn interaction, the interpretation of the pharmacokinetic and pharmacodynamic profiles of albumin-based therapeutics with disturbed albumin:FcRn interaction may have to be reassessed. The FcRn receptor has additional functionality, especially in relation to immunology, antigen presentation and delivery of proteins across mucosal membranes, consequently albumin-based fusions and conjugates may have a future role in oral and pulmonary-based vaccines and drug delivery.

Download full-text PDF

Source
http://dx.doi.org/10.1517/17425247.2015.993313DOI Listing

Publication Analysis

Top Keywords

drug delivery
20
albumin's inherent
8
inherent biochemical
8
biochemical biophysical
8
biophysical properties
8
delivery platform
8
fcrn receptor
8
albumin-based therapies
8
albuminfcrn interaction
8
albumin
6

Similar Publications

Delivering Gd-Labeled IgG Antibodies Into the Mouse Brain Following Focused Ultrasound Treatment.

Ultrasound Med Biol

March 2025

School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK. Electronic address:

Objective: Antibody-based therapy has emerged as a powerful tool for targeted treatment of neurological diseases, such as brain cancer and neurodegenerative disorders. However, direct, scalable, and safe confirmation of antibody delivery into the brain remains challenging. Antibodies can be effectively tracked when tagged with molecules that are detectable by medical imaging modalities, such as MRI, PET, or SPECT.

View Article and Find Full Text PDF

Dissolving microneedles for brain delivery: Recent advances and challenges.

Drug Discov Today

March 2025

School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Sunway Biofunctional Molecules Discovery Centre (SBMDC), School of Medical and Life Sciences, Sunway University, Sunway, Malaysia. Electronic address:

Over the past decade, dissolving microneedles (DMNs) have emerged as a promising approach for drug delivery to the brain. They are tiny devices designed to penetrate biological barriers, offering a painless method for localized and controlled drug delivery. They are suitable for delivering drugs that are susceptible to degradation when delivered orally.

View Article and Find Full Text PDF

The convergence of artificial intelligence (AI) and nanomedicine has revolutionized the design of smart multifunctional nanocarriers (SMNs) for drug and gene delivery, offering unprecedented precision, efficiency, and personalization in therapeutic applications. AI-driven approaches enhance the development of these nanocarriers by accelerating their design, optimizing drug loading and release kinetics, improving biocompatibility, and predicting interactions with biological barriers. This review explores the transformative role of AI in the fabrication and functionalization of SMNs, emphasizing its impact on overcoming challenges in targeted drug delivery, controlled release, and theranostics.

View Article and Find Full Text PDF

Application of in-silico approaches in subunit vaccines: Overcoming the challenges of antigen and adjuvant development.

J Control Release

March 2025

Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China. Electronic address:

Subunit vaccines are crucial in preventing modern diseases due to their safety, stability, and ability to elicit targeted immune responses. However, challenges in antigen and adjuvant design hinder their development. Recent advancements in in-silico approaches methods, including reverse vaccinology, structural vaccinology, and machine learning, have revolutionized vaccine development from empirical practices to rational design approaches.

View Article and Find Full Text PDF

Disulfiram-loaded electrospun fibers with antimicrobial and antitumoral properties for glioblastoma treatment.

J Control Release

March 2025

Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Spain. Electronic address:

Glioblastoma (GB) is a malignant brain tumor with low survival rates and a high recurrence ratio due to limited therapeutic arsenal. The repurposed drug disulfiram (DSF), approved for alcoholism treatment, shows promising anticancer and antimicrobial activity, but its poor biopharmaceutical profile hinders its clinical use. This work aimed to develop DSF-loaded silk fibroin (SF) electrospun fibers for controlled release in the postsurgical resection cavity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!