Silver-catalyzed C-H trifluoromethylation of arenes using trifluoroacetic acid as the trifluoromethylating reagent.

Org Lett

Department of Chemistry, and Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai 200092, P. R. China.

Published: January 2015

Direct trifluoromethylation of arenes using TFA as the trifluoromethylating reagent was achieved with Ag as the catalyst. This reaction not only provides a new protocol for aryl C-H trifluoromethylation, but the generation of CF3· from TFA may prove useful in other contexts and could potentially be extended to other trifluoromethylation reactions.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ol503189jDOI Listing

Publication Analysis

Top Keywords

c-h trifluoromethylation
8
trifluoromethylation arenes
8
trifluoromethylating reagent
8
silver-catalyzed c-h
4
trifluoromethylation
4
arenes trifluoroacetic
4
trifluoroacetic acid
4
acid trifluoromethylating
4
reagent direct
4
direct trifluoromethylation
4

Similar Publications

Lewis Base-Enhanced C-H Bond Functionalization Mediated by a Diiron Imido Complex.

Inorg Chem

January 2025

Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States.

Herein, we investigate the effects of ligand design on the nuclearity and reactivity of metal-ligand multiply bonded (MLMB) complexes to access an exclusively bimetallic reaction pathway for C-H bond functionalization. To this end, the diiron alkoxide [Fe(Dbf)] () was treated with 3,5-bis(trifluoromethyl)phenyl azide to access the diiron imido complex [Fe(Dbf)(μ-NCHF)] () that promotes hydrogen atom abstraction (HAA) from a variety of C-H and O-H bond containing substrates. A diiron bis(amide) complex [Fe(Dbf)(μ-NHCHF)(NHCHF)] () was generated, prompting the isolation of the analogous bridging amide terminal alkoxide [Fe(Dbf)(μ-NHCHF)(OCH)] () and the asymmetric pyridine-bound diiron imido [Fe(Dbf)(μ-NCHF)(NCH)] ().

View Article and Find Full Text PDF

The emergence of RNA viruses driven by global population growth and international trade highlights the urgent need for effective antiviral agents that can inhibit viral replication. Nucleoside analogs, which mimic natural nucleotides, have shown promise in targeting RNA-dependent RNA polymerases (RdRps). Starting from protected 5-iodouridine, we report the synthesis of -substituted-(1,3-diyne)-uridines nucleosides and their phosphoramidate prodrugs.

View Article and Find Full Text PDF

Radical α-C-H Alkylation and Heteroarylation of Benzyl Anilines Enabled by Organic Photoredox Catalysis.

Org Lett

January 2025

School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, People's Republic of China.

A photocatalysis-involved α-amino radical provides an appealing approach for rapid construction of complex amine architectures. Reported herein is an organophotoredox catalytic approach to α-C-H alkylation and heteroarylation of benzyl anilines, which enables the introduction of valuable trifluoromethyl alcohol, chromanone, or pyridine motifs at the α position of amines. This protocol highlights metal-free, step and atom economies and broad substrate scopes (>80 examples).

View Article and Find Full Text PDF
Article Synopsis
  • Researchers developed a method for site-selective C-H trifluoromethylation using arylthianthrenium salts and generated CuCF from Ruppert-Prakash reagent under visible light.
  • The reaction was notably sped up with a small amount of -BINAP, completing in just 15 minutes under mild conditions.
  • This approach demonstrated high efficiency, broad substrate compatibility, and excellent regioselectivity, which could enhance the discovery of fluorinated medicinal compounds.
View Article and Find Full Text PDF

Alkanes C-C C-H Bond Activation via a Barrierless Potential Energy Path: Trifluoromethyl Carbenes Enhance Primary C-H Bond Functionalization.

J Am Chem Soc

December 2024

Departamento de Química and Laboratorio de Catálisis Homogénea, Unidad Asociada al CSIC, CIQSO-Centro de Investigación en Química Sostenible, Universidad de Huelva, Huelva 21007, Spain.

In this mixed computational and experimental study, we report a catalytic system for alkane C-C functionalization in which the responsible step for C-H bond activation shows no barrier in the potential energy path. DFT modeling of three silver-based catalysts and four diazo compounds led to the conclusion that the TpAg═C(H)CF (Tp = fluorinated trispyrazolylborate ligand) carbene intermediates interact with methane without a barrier in the potential energy surface, a prediction validated by experimentation using N═C(H)CF as the carbene source. The array of alkanes from propane to -hexane led to the preferential functionalization of the primary sites with unprecedented values of selectivity for an acceptor diazo compound.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!