With current research efforts shifting towards the 4d and 5d transition metal oxides, understanding the evolution of the electronic and magnetic structure as one moves away from 3d materials is of critical importance. Here we perform X-ray spectroscopy and electronic structure calculations on A-site-ordered perovskites with Cu in the A-site and the B-sites descending along the ninth group of the periodic table to elucidate the emerging properties as d-orbitals change from partially filled 3d to 4d to 5d. The results show that when descending from Co to Ir, the charge transfers from the cuprate-like Zhang-Rice state on Cu to the t(2g) orbital of the B site. As the Cu d-orbital occupation approaches the Cu(2+) limit, a mixed valence state in CaCu(3)Rh(4)O(12) and heavy fermion state in CaCu(3)Ir(4)O(12) are obtained. The investigated d-electron compounds are mapped onto the Doniach phase diagram of the competing RKKY and Kondo interactions developed for the f-electron systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/ncomms6818 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, United Kingdom.
Below a critical temperature [Formula: see text], superconductors transport electrical charge without dissipative energy losses. The application of a magnetic field [Formula: see text] generally acts to suppress [Formula: see text], up to some critical field strength at which [Formula: see text] 0 K. Here, we investigate magnetic field-induced superconductivity in high-quality specimens of the triplet superconductor candidate UTe[Formula: see text] in pulsed magnetic fields up to [Formula: see text] [Formula: see text] 70 T.
View Article and Find Full Text PDFSmall Methods
January 2025
Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
Epitaxy, a process to prepare crystalline materials in nanostructures and thin films, is the core technology for preparing high-quality materials as a key enabler of next-generation microelectronics and quantum information system. Progress in epitaxy has been expanding the choice of materials and their heterostructures beyond the combinations limited by materials compatibility. However, the improvement of material quality, physical implementation of materials with unique properties, and integration of incommensurate materials in an architecture have been the challenging issues.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Physics and Astronomy, University of Manchester, Manchester, UK.
Unconventional superconductivity, where electron pairing does not involve electron-phonon interactions, is often attributed to magnetic correlations in a material. Well known examples include high-T cuprates and uranium-based heavy fermion superconductors. Less explored are unconventional superconductors with strong spin-orbit coupling, where interactions between spin-polarised electrons and external magnetic field can result in multiple superconducting phases and field-induced transitions between them, a rare phenomenon in the superconducting state.
View Article and Find Full Text PDFJ Phys Condens Matter
December 2024
Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, United States of America.
Time-resolved ultrafast spectroscopy has emerged as a promising tool to dynamically induce and manipulate non-trivial electronic states of matter out-of-equilibrium. Here we theoretically investigate light pulse driven dynamics in a Kondo lattice system close to quantum criticality. Based on a time-dependent auxiliary fermion mean-field calculation we show that light can dehybridize the local Kondo screening and induce oscillating magnetic order out of a previously paramagnetic state.
View Article and Find Full Text PDFNat Commun
November 2024
Department of Physics, The Pennsylvania State University, University Park, PA, USA.
The attractive interaction in conventional BCS superconductors is provided by a bosonic mode. However, the pairing glue of most unconventional superconductors is unknown. The effect of electron-boson coupling is therefore extensively studied in these materials.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!