In the germarium of the Drosophila ovary, germline cysts are encapsulated one at a time by a follicular epithelium derived from two follicle stem cells (FSCs). Ovaries in flies mutant for the serine/threonine kinase Pak exhibit a novel phenotype, in which two side-by-side cysts are encapsulated at a time, generating paired egg chambers. This striking phenotype originates in the pupal ovary, where the developing germarium is shaped by the basal stalk, a stack of cells formed by cell intercalation. The process of basal stalk formation is not well understood, and we provide evidence that the cell intercalation is driven by actomyosin contractility of DE-Cadherin-adhered cells, leading to a column of disk-shaped cells exhibiting a novel radial cell polarity. Cell intercalation fails in Pak mutant ovaries, leading to abnormally wide basal stalks and consequently wide germaria with side-by-side cysts. We present evidence that Pak mutant germaria have extra FSCs, and we propose that contact of a germline cyst with the basal stalk in the pupal ovary contributes to FSC niche formation. The wide basal stalk in Pak mutants enables the formation of extra FSC niches which are mispositioned and yet functional, indicating that the FSC niche can be established in diverse locations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6514404 | PMC |
http://dx.doi.org/10.1242/dev.111039 | DOI Listing |
Molecules
December 2024
Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Str., 20-093 Lublin, Poland.
Primary and metastatic tumors of the nervous system represent a diverse group of neoplasms, each characterized by distinct biological features, prognostic outcomes, and therapeutic approaches. Due to their molecular complexity and heterogeneity, nervous system cancers (NSCs) pose significant clinical challenges. For decades, plants and their natural products with established anticancer properties have played a pivotal role in the treatment of various medical conditions, including cancers.
View Article and Find Full Text PDFMolecules
December 2024
Department of Chemistry, University of the Pacific, 3601 Pacific Avenue, Stockton, CA 95211, USA.
In the field of drug development, the quest for novel compounds that bind to DNA with high affinity and specificity never ends. In the present work, we report the newest development in this field, namely, triplex DNA-specific binding ligands based on the 5-substituted flavone scaffold in our lab. Biophysical studies showed that the newly synthesized flavone derivatives (depending on the side chains) bind to triplex DNA with binding affinities better than or similar to 5-substituted 3,3',4',7-tetramethoxyflavonoids.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Goethe University, Frankfurt University Hospital, Medical Clinic 1, 60596 Frankfurt, Germany.
This study demonstrates the effectiveness of propidium iodide as a reliable marker for detecting dead or dying cells in frozen liver tissue sections. By comparing propidium iodide staining with the widely used Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, both methods showed consistent results in disease models such as alcohol-induced fibrosis and Western diet-induced fatty liver. Additionally, propidium iodide was successfully co-stained with other fluorescent markers, like phalloidin (for actin filaments) and antibodies targeting collagen, enabling detailed spatial analysis of dying cells within tissue.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia QLD 4072, Australia.
Steroids are organic compounds found in all forms of biological life. Besides their structural roles in cell membranes, steroids act as signalling molecules in various physiological processes and are used to treat inflammatory conditions. It has been hypothesised that in addition to their well-characterised genomic and non-genomic pathways, steroids exert their biological or pharmacological activities an indirect, nonreceptor-mediated membrane mechanism caused by steroid-induced changes to the physicochemical properties of cell membranes.
View Article and Find Full Text PDFWhile the genetic paradigm of cancer etiology has proven powerful, it remains incomplete as evidenced by the widening spectrum of non-cancer cell-autonomous "hallmarks" of cancer. Studies have demonstrated the commonplace presence of high oncogenic mutational burdens in homeostatically-stable epithelia. Hence, the presence of driver mutations alone does not result in cancer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!