A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effects of lignin modification on wheat straw cell wall deconstruction by Phanerochaete chrysosporium. | LitMetric

Effects of lignin modification on wheat straw cell wall deconstruction by Phanerochaete chrysosporium.

Biotechnol Biofuels

Department of Biological Systems Engineering, Bioprocessing and Bioproduct Engineering Laboratory (BBEL), Washington State University, L.J. Smith 213, Pullman, Washington 99163 USA.

Published: December 2014

Background: A key focus in sustainable biofuel research is to develop cost-effective and energy-saving approaches to increase saccharification of lignocellulosic biomass. Numerous efforts have been made to identify critical issues in cellulose hydrolysis. Aerobic fungal species are an integral part of the carbon cycle, equip the hydrolytic enzyme consortium, and provide a gateway for understanding the systematic degradation of lignin, hemicelluloses, and cellulose. This study attempts to reveal the complex biological degradation process of lignocellulosic biomass by Phanerochaete chrysosporium in order to provide new knowledge for the development of energy-efficient biorefineries.

Results: In this study, we evaluated the performance of a fungal biodegradation model, Phanerochaete chrysosporium, in wheat straw through comprehensive analysis. We isolated milled straw lignin and cellulase enzyme-treated lignin from fungal-spent wheat straw to determine structural integrity and cellulase absorption isotherms. The results indicated that P. chrysosporium increased the total lignin content in residual biomass and also increased the cellulase adsorption kinetics in the resulting lignin. The binding strength increased from 117.4 mL/g to 208.7 mL/g in milled wood lignin and from 65.3 mL/g to 102.4 mL/g in cellulase enzyme lignin. A detailed structural dissection showed a reduction in the syringyl lignin/guaiacyl lignin ratio and the hydroxycinnamate/lignin ratio as predominant changes in fungi-spent lignin by heteronuclear single quantum coherence spectroscopy.

Conclusion: P. chrysosporium shows a preference for degradation of phenolic terminals without significantly destroying other lignin components to unzip carbohydrate polymers. This is an important step in fungal growth on wheat straw. The phenolics presumably locate at the terminal region of the lignin moiety and/or link with hemicellulose to form the lignin-carbohydrate complex. Findings may inform the development of a biomass hydrolytic enzyme combination to enhance lignocellulosic biomass hydrolysis and modify the targets in plant cell walls.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4266972PMC
http://dx.doi.org/10.1186/s13068-014-0161-3DOI Listing

Publication Analysis

Top Keywords

wheat straw
16
phanerochaete chrysosporium
12
lignocellulosic biomass
12
lignin
11
hydrolytic enzyme
8
straw
5
chrysosporium
5
biomass
5
effects lignin
4
lignin modification
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!