Fiber-type-specific sensitivities and phenotypic adaptations to dietary fat overload differentially impact fast- versus slow-twitch muscle contractile function in C57BL/6J mice.

J Nutr Biochem

Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, NL-5600 MB Eindhoven, The Netherlands; Netherlands Consortium for Systems Biology, PO Box 94215, NL-1090GE Amsterdam, The Netherlands; Department of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, Building 3226, 9713 AV Groningen, The Netherlands.

Published: February 2015

High-fat diets (HFDs) have been shown to interfere with skeletal muscle energy metabolism and cause peripheral insulin resistance. However, understanding of HFD impact on skeletal muscle primary function, i.e., contractile performance, is limited. Male C57BL/6J mice were fed HFD containing lard (HFL) or palm oil (HFP), or low-fat diet (LFD) for 5weeks. Fast-twitch (FT) extensor digitorum longus (EDL) and slow-twitch (ST) soleus muscles were characterized with respect to contractile function and selected biochemical features. In FT EDL muscle, a 30%-50% increase in fatty acid (FA) content and doubling of long-chain acylcarnitine (C14-C18) content in response to HFL and HFP feeding were accompanied by increase in protein levels of peroxisome proliferator-activated receptor-γ coactivator-1α, mitochondrial oxidative phosphorylation complexes and acyl-CoA dehydrogenases involved in mitochondrial FA β-oxidation. Peak force of FT EDL twitch and tetanic contractions was unaltered, but the relaxation time (RT) of twitch contractions was 30% slower compared to LFD controls. The latter was caused by accumulation of lipid intermediates rather than changes in the expression levels of proteins involved in calcium handling. In ST soleus muscle, no evidence for lipid overload was found in any HFD group. However, particularly in HFP group, the peak force of twitch and tetanic contractions was reduced, but RT was faster than LFD controls. The latter was associated with a fast-to-slow shift in troponin T isoform expression. Taken together, these data highlight fiber-type-specific sensitivities and phenotypic adaptations to dietary lipid overload that differentially impact fast- versus slow-twitch skeletal muscle contractile function.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jnutbio.2014.09.014DOI Listing

Publication Analysis

Top Keywords

contractile function
12
skeletal muscle
12
fiber-type-specific sensitivities
8
sensitivities phenotypic
8
phenotypic adaptations
8
adaptations dietary
8
overload differentially
8
differentially impact
8
impact fast-
8
fast- versus
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!