A great challenge for nanotechnology is to controllably organize anisotropic nanomaterials into well-defined three-dimensional superstructures with customized properties. Here we successfully constructed anisotropic Au nanorod (AuNR) helical superstructures (helices) with tailored chirality in a programmable manner. By designing the 'X' pattern of the arrangement of DNA capturing strands (15nt) on both sides of a two-dimensional DNA origami template, AuNRs functionalized with the complementary DNA sequences were positioned on the origami and were assembled into AuNR helices with the origami intercalated between neighboring AuNRs. Left-handed (LH) and right-handed (RH) AuNR helices were conveniently accomplished by solely tuning the mirrored-symmetric 'X' patterns of capturing strands on the origami. The inter-rod distance was precisely defined as 14 nm and inter-rod angle as 45°, thus a full helix contains 9 AuNRs with its length up to about 220 nm. By changing the AuNR/origami molar ratio in the assembly system, the average number of AuNR in the helices was tuned from 2 to 4 and 9. Intense chiroptical activities arose from the longest AuNR helices with a maximum anisotropy factor of ∼0.02, which is highly comparable to the reported macroscopic AuNR assemblies. We expect that our strategy of origami templated assembly of anisotropic chiral superstructures would inspire the bottom-up fabrication of optically active nanostructures and shed light on a variety of applications, such as chiral fluids, chiral signal amplification, and fluorescence combined chiral spectroscopy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja511333q | DOI Listing |
Nanoscale
June 2023
CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology (NCNST), Beijing 100190, P. R. China.
Recently, in combination with seed-mediated growth, thiolated chiral molecule-guided growth has shown great promise in obtaining chiral plasmonic nanostructures. Previously, with the assistance of chiral cysteines (Cys), we realized helical growth of plasmonic shells on gold nanorod (AuNR) seeds dispersed in cetyltrimethylammonium bromide (CTAB) solution. Herein, we further studied the roles of non-chiral cationic surfactants in tuning the helical growth.
View Article and Find Full Text PDFRSC Adv
August 2018
Department of Plastics Engineering and Nanomanufacturing Center, University of Massachusetts Lowell MA 01854 USA
In this study, modified poly(ε-caprolactone) (PCL) tri-block copolymers were successfully synthesized through ring opening polymerization. The nanocomposite films containing either colloidal gold nanorods (AuNRs) or gold nanospheres (AuNSs) in the polymer matrix were fabricated without chemical modification to realize light-responsive shape memory behaviors. The localized surface plasmon resonance of AuNPs was utilized by irradiating the selective wavelength of light to create a photothermal effect.
View Article and Find Full Text PDFAdv Mater
April 2017
CAS Key Laboratory of Nano-Bio Interfaces, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
Plasmonic motifs with precise surface recognition sites are crucial for assembling defined nanostructures with novel functionalities and properties. In this work, a unique and effective strategy is successfully developed to pattern DNA recognition sites in a helical arrangement around a gold nanorod (AuNR), and a new set of heterogeneous AuNR@AuNP plasmonic helices is fabricated by attaching complementary-DNA-modified gold nanoparticles (AuNPs) to the predesigned sites on the AuNR surface. AuNR is first assembled to one side of a bifacial rectangular DNA origami, where eight groups of capture strands are selectively patterned on the other side.
View Article and Find Full Text PDFJ Am Chem Soc
January 2015
Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, CAS Center for Excellence in Brain Science, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou, 215123 China.
A great challenge for nanotechnology is to controllably organize anisotropic nanomaterials into well-defined three-dimensional superstructures with customized properties. Here we successfully constructed anisotropic Au nanorod (AuNR) helical superstructures (helices) with tailored chirality in a programmable manner. By designing the 'X' pattern of the arrangement of DNA capturing strands (15nt) on both sides of a two-dimensional DNA origami template, AuNRs functionalized with the complementary DNA sequences were positioned on the origami and were assembled into AuNR helices with the origami intercalated between neighboring AuNRs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!