Groundwater arsenic removal using granular TiO2: integrated laboratory and field study.

Environ Sci Pollut Res Int

State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China.

Published: June 2015

High concentrations of arsenic (As) in groundwater pose a great threat to human health. The motivation of this study was to provide a practical solution for As-safe water in As geogenic areas using granular TiO2 (GTiO2). The kinetics results indicated that the As (III/V) adsorption on GTiO2 conformed to the Weber-Morris (WM) intraparticle diffusion model. The Langmuir isotherm results suggested that the adsorption capacities for As (III) and As (V) were 106.4 and 38.3 mg/g, respectively. Ion effect study showed that cationic Ca and Mg substantially enhanced As (V) adsorption, whereas no significant impact was observed on As (III). Silicate substantially decreased As (V) adsorption by 57 % and As (III) by 50 %. HCO3 (-) remarkably inhibited As (V) adsorption by 52 %, whereas it slightly reduced As (III) adsorption by 8 %. Field column results demonstrated that ∼700 μg/L As was removed at an empty bed contact time (EBCT) of 1.08 min for 968 bed volumes before effluent As concentration exceeded 10 μg/L, corresponding to 0.96 mg As/g GTiO2. Two household filters loaded with 110 g GTiO2 in the on-off operational mode can provide 6-L/day As-safe drinking water up to 288 and 600 days from the groundwater containing ∼700 μg/L As and ∼217 μg/L As, respectively. Integration of batch experiments and column tests with systematic variation of EBCTs was successfully achieved using PHREEQC incorporating a charge distribution multisite complexation (CD-MUSIC) model and one-dimensional reactive transport block.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-014-3955-8DOI Listing

Publication Analysis

Top Keywords

granular tio2
8
adsorption
6
groundwater arsenic
4
arsenic removal
4
removal granular
4
tio2 integrated
4
integrated laboratory
4
laboratory field
4
field study
4
study high
4

Similar Publications

Functionally Graded Oxide Scale on (Hf,Zr,Ti)B Coating with Exceptional Ablation Resistance Induced by Unique Ti Dissolving.

Adv Sci (Weinh)

January 2025

Shaanxi Key Laboratory of Fiber Reinforced Light-Weight Composites, State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an, 710072, China.

Multicomponent Ti-containing ultra-high temperature ceramics (UHTCs) have emerged as more promising ablation-resistant materials than typical UHTCs for applications above 2000 °C. However, the underlying mechanism of Ti improving the ablation performance is still obscure. Here, (Hf,Zr,Ti)B coatings are fabricated by supersonic atmospheric plasma spraying, and the effects of Ti content on the ablation performance under an oxyacetylene flame are investigated.

View Article and Find Full Text PDF
Article Synopsis
  • The study evaluated the impact of varying concentrations of titanium dioxide nanoparticles (TiO NPs) on two types of sludge: aerobic granular sludge (AGS) and algal-bacterial granular sludge (ABGS) over a 10-day period in synthetic wastewater.
  • At lower concentrations (1 and 5 mg/L), TiO NPs did not significantly affect nutrient removal but increased the production of extracellular polymeric substances (EPSs), particularly proteins.
  • Higher concentrations (up to 50 mg/L) negatively impacted nutrient removal, especially in AGS, while ABGS showed greater resilience due to its higher microbial activity and symbiotic relationships between algae and bacteria.
View Article and Find Full Text PDF

Bacterial adhesion, colonization, and spread on aluminum alloy surfaces pose significant risks to human health and public safety. To address these issues, this investigation employed an ultrasonic-assisted electrodeposition method to synthesize long-lasting antibacterial Cu-TiO nanocomposite coatings on porous anodized aluminum oxide (AAO) substrates. Leveraging the cavitation effect of ultrasound, this approach fostered the dispersive incorporation of TiO nanoparticles into the resulting composite coating, thereby expediting the crystallization process of electrodeposition and refining the granular structure.

View Article and Find Full Text PDF

Nanoparticles (NPs) are of significant interest due to their unique properties, such as large surface area and high reactivity, which have facilitated advancements in various fields. However, their increased use raises concerns about environmental impacts, including on wastewater treatment processes. This review examines the effects of different nanoparticles on anaerobic, anammox, aerobic, and algal-bacterial granular sludge used in wastewater treatment.

View Article and Find Full Text PDF

Response to shock load of titanium dioxide nanoparticles on aerobic granular sludge and algal-bacterial granular sludge processes.

NanoImpact

October 2024

Department of Applied and Environmental Chemistry, University of Szeged, Szeged, Hungary; HUN-REN-SZTE Reaction Kinetics and Surface Chemistry Research Group, Szeged, Hungary.

Titanium dioxide nanoparticles (TiO NPs) are extensively used in various fields and can consequently be detected in wastewater, making it necessary to study their potential impacts on biological wastewater treatment processes. In this study, the shock-load impacts of TiO NPs were investigated at concentrations ranging between 1 and 200 mg L on nutrient removal, extracellular polymeric substances (EPSs), microbial activity in aerobic granular sludge (AGS), and algal-bacterial granular sludge (AB-AGS) bioreactors. The results indicated that low concentration (≤10 mg L) TiO NPs had no effect on microbial activity or the removal of chemical oxygen demand (COD), nitrogen, and phosphorus, due to the increased production of extracellular polymeric substances (EPSs) in the sludge.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!