Background: Improving management of patients suffering from cerebral malaria is needed to reduce the devastating mortality and morbidity of the disease in endemic areas. Intravenous artesunate is currently the first-line treatment, but the lack of material and skills in the field make it difficult to implement in endemic areas. Intranasal route provides a very easy and direct gateway to blood and brain to deliver medications, by-passing the brain blood barrier. Therefore, it could be helpful and suitable to administer artesunate in the context of cerebral malaria, especially in young children. In this study, intranasal administration of artesunate to rescue from cerebral malaria using a murine model was tested.
Methods: CBA/J mice infected with Plasmodium berghei ANKA strain received artesunate (20 mg/kg) or a placebo solution intranasally, either on day 5, 6 or 7 post-infection, during a controlled, blinded, randomized trial. Primary endpoint was mortality on day 12 post-infection. Secondary endpoints were parasitaemia and clinical stage. Pharmacokinetics data following administration were collected in blood and brains of treated mice. Local toxicity was evaluated by histopathologic examination of brain and nasal sections in blinded manner.
Results: Intranasal administration of artesunate dramatically reduced the mortality rate (p < 0.001), preventing death in most cases. Parasitaemia loads decreased by 88.7% (61.8-100%) within 24 hours after administration. Symptoms of cerebral malaria were prevented or reversed. Dihydroartemisinin was detected in mice blood and brain within 15 minutes of intranasal administration. No direct nasal or brain toxicity was detected.
Conclusion: Intranasal delivery is an efficient route to timely and efficiently administer artesunate and therefore may contribute to decreasing malaria-related mortality.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4320559 | PMC |
http://dx.doi.org/10.1186/1475-2875-13-501 | DOI Listing |
Pathogens
November 2024
Centre de Résonance Magnétique Biologique et Médicale (CRMBM) UMR 7339, Faculté des Sciences Médicales et Paramédicales la Timone, Aix-Marseille Université, CNRS, 13055 Marseille, France.
Cerebral malaria (CM), the most lethal clinical syndrome of infection, mostly affects children under 5 in sub-Saharan Africa. CM is characterized by seizures and impaired consciousness that lead to death in 15-20% of cases if treated quickly, but it is completely fatal when untreated. Brain magnetic resonance imaging (MRI) is an invaluable source of information on the pathophysiology of brain damage, but, due to limited access to scanners in endemic regions, only until very recently have case reports of CM patients studied with advanced MRI methods been published.
View Article and Find Full Text PDFTrends Parasitol
January 2025
Department of Infectious Diseases, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne 3000, Australia; Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne 3000, Australia.
In Plasmodium falciparum malaria, infected cells accumulate in blood vessels of organs, including the brain. Recently, Reyes et al. identified monoclonal antibodies that stop infected cells from binding to the endothelial protein C receptor (EPCR) in a model of brain blood vessels.
View Article and Find Full Text PDFSci Rep
December 2024
Medical Technology Program, Faculty of Science, Nakhon Phanom University, Nakhon Phanom, Thailand.
Interferon γ-induced protein 10 kDa (IP-10) or C-X-C motif chemokine 10 (CXCL10) is produced and secreted from specific leukocytes such as neutrophils, eosinophils, and monocytes, which play key roles in the immune response to Plasmodium infections. This systematic review aimed to collate and critically appraise the current evidence on IP-10 levels in malaria patients. It provided insights into its role in malaria pathogenesis and potential as a biomarker for Plasmodium infections and disease severity.
View Article and Find Full Text PDFIran J Parasitol
January 2024
Department of Internal Medicine, Marmara University Pendik Training and Research Hospital, Istanbul, Turkey.
Cureus
December 2024
Neurology, Adventist Health White Memorial, Los Angeles, USA.
malaria affects millions of people in certain regions of the world, with neurological involvement and/or cerebral malaria as potential manifestations. Brain magnetic resonance imaging (MRI) abnormalities have been well-documented in cerebral malaria. However, MRI abnormalities in non-cerebral malaria, especially in neurologically asymptomatic patients, are not well understood and have been less frequently reported, especially in non-endemic regions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!