Internodons are a formalization of Hennig's concept of species. We present an alternative construction of internodons imposing a tree structure on the genealogical network. We prove that the segments (trivial unary trees) from this tree structure are precisely the internodons. We obtain the following spin-offs. First, the generated tree turns out to be an organismal tree of life. Second, this organismal tree is homeomorphic to the phylogenetic Hennigian species tree of life, implying the discovery of a multi-level tree of life: this phylogenetic tree can be obtained by zooming out from the organismal tree, or conversely, the organismal tree of life can be generated by expanding the phylogenetic nodes into unary trees. Finally, the definition of the organismal tree allows an efficient algorithmic transformation of a given genealogical network into its corresponding phylogenetic species tree of life. The latter will be presented in a separate paper.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11538-014-0048-2DOI Listing

Publication Analysis

Top Keywords

tree life
24
organismal tree
20
tree
13
alternative construction
8
construction internodons
8
multi-level tree
8
tree structure
8
genealogical network
8
unary trees
8
species tree
8

Similar Publications

Hydraulic redistribution (HR) is a critical ecological process whereby plant roots transfer water from wetter to drier soil layers, significantly impacting soil moisture dynamics and plant water and nutrient uptake. Yet a comprehensive understanding of the mechanism triggering HR and its influencing factors remains elusive. Here, we conducted a systematic meta-analysis to discuss the influence of soil conditions and plant species characteristics on HR occurrence.

View Article and Find Full Text PDF

Ink disease caused by the hemibiotrophic root pathogen Phytophthora cinnamomi (Pc) is devastating for the European chestnut (Castanea sativa), unlike Asian chestnuts and interspecific hybrids which are resistant to Pc. The role that hormone responses play for Pc resistance remains little understood, especially regarding the temporal regulation of hormone responses. We explored the relationship between changes in tree health and physiology and alterations in leaf and root phytohormones and primary and secondary metabolites during compatible and incompatible Castanea spp.

View Article and Find Full Text PDF

Background: Precision nutrition-based methods develop tailored interventions and/or recommendations accounting for determinants of intra- and inter-individual variation in response to the same diet, compared to current 'one-size-fits-all' population-level approaches. Determinants may include genetics, current dietary habits and eating patterns, circadian rhythms, health status, gut microbiome, socioeconomic and psychosocial characteristics, and physical activity. ​​​​In this systematic review, we examined the evidence base for the effect of interventions based on precision nutrition approaches on overweight and obesity in children and adolescents to help inform future research and global guidelines.

View Article and Find Full Text PDF

The genome sequence of a leafhopper, Scott, 1876.

Wellcome Open Res

January 2025

Independent researcher, Telford, England, UK.

We present a genome assembly from an individual male specimen of (leafhopper; Arthropoda; Insecta; Hemiptera; Cicadellidae). The genome sequence has a total length of 1,819.90 megabases.

View Article and Find Full Text PDF

Caspase recruitment domains (CARDs) and pyrin domains are important facilitators of inflammasome activity and pyroptosis. Following pathogen recognition by nucleotide binding-domain, leucine-rich, repeat-containing (NLR) proteins, CARDs recruit and activate caspases, which, in turn, activate gasdermin pore-forming proteins to induce pyroptotic cell death. Here we show that CARD domains are present in defence systems that protect bacteria against phage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!