Biomimetic kinetic resolution: highly enantio- and diastereoselective transfer hydrogenation of aglain ketones to access flavagline natural products.

J Am Chem Soc

Department of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, Boston, Massachusetts 02215, United States.

Published: January 2015

We have previously reported asymmetric syntheses and absolute configuration assignments of the aglains (+)-ponapensin and (+)-elliptifoline and proposed a biosynthetic kinetic resolution process to produce enantiomeric rocaglamides and aglains. Herein, we report a biomimetic approach for the synthesis of enantiomerically enriched aglains and rocaglamides via kinetic resolution of a bridged ketone utilizing enantioselective transfer hydrogenation. The methodology has been employed to synthesize and confirm the absolute stereochemistries of the pyrimidone rocaglamides (+)-aglaiastatin and (-)-aglaroxin C. Additionally, the enantiomers and racemate of each metabolite were assayed for inhibition of the heat-shock response, cytotoxicity, and translation inhibition.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4304436PMC
http://dx.doi.org/10.1021/ja511728bDOI Listing

Publication Analysis

Top Keywords

kinetic resolution
12
transfer hydrogenation
8
biomimetic kinetic
4
resolution highly
4
highly enantio-
4
enantio- diastereoselective
4
diastereoselective transfer
4
hydrogenation aglain
4
aglain ketones
4
ketones access
4

Similar Publications

The synthesis of chiral tetrahydroquinolines (THQs) has garnered significant interest from medicinal chemists due to their frequent presence as pharmacophores in bioactive compounds. While existing synthetic methods have primarily focused on THQs with single or multiple endocyclic chiral centers, the selective construction of THQs with both and cyclic chiral centers remains a significant challenge that requires further development. This study introduces a dynamic kinetic resolution (DKR)-based transfer hydrogenation of racemic 2-substituted quinolines, which yields structurally novel chiral THQs with consecutive and cyclic chiral centers in excellent yields and stereoselectivities (59 examples, with generally >20:1 dr and >90% ee, up to three consecutive stereocenters).

View Article and Find Full Text PDF

RF Heating Effects in CEST NMR with Hyperpolarized 129Xe Considering Different Spin Exchange Kinetics and Saturation Schemes.

Chemphyschem

January 2025

Deutsches Krebsforschungszentrum, Translational Molecular Imaging, Im Neuenheimer Feld 223, 69120, Heidelberg, GERMANY.

Chemical exchange saturation transfer (CEST) improves the sensitivity of NMR but depending on the spin exchange kinetics, it can require substantial RF energy deposition to label magnetization. Potential side effects like RF-induced heating may occur and must be monitored. Here, we explore the parameter space considering not only undesired heating but efficient CEST build-up (depolarization rate), spectral resolution (line width), and subsequent effects like changes in chemical shifts of CEST responses must be considered, too.

View Article and Find Full Text PDF

MINFLUX nanoscopy relies on the localization of single fluorophores with expected ~ 2 nm precision in 3D mapping, roughly one order of magnitude better than standard stimulated emission depletion microscopy or stochastic optical reconstruction microscopy. This "brilliant" technique takes advantage of specialized localization principles and algorithms that require only dim fluorescence signals with a minimum flux of photons; hence the name follows. With this level of performance, MINFLUX imaging and tracking should allow for the routine study of biological processes down to the molecular scale, revealing previously unresolved details in cell structures, such as the organization of calcium channels in muscle cells or the clustering of receptors in synapses.

View Article and Find Full Text PDF

Phosphorothioate (PS) modifications in single-guided RNA (sgRNA) are crucial for genome editing applications using the CRISPR/Cas9 system. These modifications may enhance sgRNA stability, pharmacokinetics, and binding to targets, thereby facilitating the desired genetic alterations. Incorporating multiple PS groups at varying positions may introduce chiral centers into the sgRNA backbone, resulting in a complex mixture of constitutional- and stereoisomers that challenges current analytical capabilities for reliable identification and quantification.

View Article and Find Full Text PDF

The development of efficient immobilization support for the enhancement of enzyme activity and recyclability is a highly desirable objective. Single-crystalline ordered macro-microporous ZIF-8 (SOM-ZIF-8), has emerged as a highly effective matrix for enzyme immobilization, however, the inherent hydrophobic nature limits its further advancement. Herein, we have customized the immobilization of the Pseudomonas cepacia lipase (LP) in the modification-channels of SOM-ZIF-8 by functionalizing the inner surface-properties with polyethylene glycol (PEG) (LP@SOM-ZIF-8-PEG), and significant enhancement of the activity and (thermal, solvent and cyclic) stability can be realized.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!