Small-interfering RNAs and microRNAs are small ∼21-22 nucleotide long RNAs capable of posttranscriptional suppression of gene expression. The synthetic siRNAs are especially designed to target pre-specified genes and are common molecular biology tools. The miRNAs are endogenous regulators of gene expression found in a wide variety of eukaryotes. miRNAs are currently utilized for diagnostics applications. Therapeutically, various miRNA-antagonizing tools are being explored and miRNAs are also utilized for cell-specific inhibition of the expression of gene therapy vectors harboring target sites for specific miRNAs. Here we show, for the first time, that siRNAs and miRNAs can be harnessed to induce gene expression. We designed special expression vectors in which target sites for artificial siRNAs or endogenous miRNAs are located between the transgene and an Upstream Inhibitory Region (UIR). We hypothesized that cleavage of the mRNA by siRNAs or miRNAs will separate the transgene from the UIR and the resulting uncapped mRNA will be capable of being translated. A UIR composed of seven open reading frames was found to be the most efficient inhibitor of the translation of the downstream transgene. We show that under such a configuration both artificial siRNAs and endogenous miRNAs were capable of inducing transgene expression. We show that using the diphtheria toxin A-chain gene, in combination with target sites for highly expressed miRNAs, specific induction of cell-death can be achieved, setting the stage for application to cancer therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4267845PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0115327PLOS

Publication Analysis

Top Keywords

gene expression
16
target sites
12
mirnas
9
expression vectors
8
small-interfering rnas
8
rnas micrornas
8
sirnas mirnas
8
artificial sirnas
8
sirnas endogenous
8
endogenous mirnas
8

Similar Publications

Background: Immune cells within tumor tissues play important roles in remodeling the tumor microenvironment, thus affecting tumor progression and the therapeutic response. The current study was designed to identify key markers of plasma cells and explore their role in high-grade serous ovarian cancer (HGSOC).

Methods: We utilized single-cell sequencing data from the Gene Expression Omnibus (GEO) database to identify key immune cell types within HGSOC tissues and to extract related markers via the Seurat package.

View Article and Find Full Text PDF

ZNF169 promotes thyroid cancer progression via upregulating FBXW10.

Cell Div

January 2025

Department of Nuclear Medicine, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South university/Hunan Cancer Hospital, No. 283 Tongzipo Road, Yuelu District, Changsha, 410013, Hunan, P.R. China.

Background: Zinc finger protein 169 (ZNF169) plays a key role in cancer development. However, the specific role of ZNF169 in the tumorigenesis of thyroid carcinoma (THCA) remains poorly understood.

Methods: The expression of ZNF169 was measured using immunohistochemistry, RT-qPCR, and western blot.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD), a hallmark of age-related cognitive decline, is defined by its unique neuropathology. Metabolic dysregulation, particularly involving glutamine (Gln) metabolism, has emerged as a critical but underexplored aspect of AD pathophysiology, representing a significant gap in our current understanding of the disease.

Methods: To investigate the involvement of GlnMgs in AD, we conducted a comprehensive bioinformatic analysis.

View Article and Find Full Text PDF

Background: The microbiome regulates the respiratory epithelium's immunomodulatory functions. To explore how the microbiome's biodiversity affects microbe-epithelial interactions, we screened 58 phylogenetically diverse microbes for their transcriptomic effect on human primary bronchial air-liquid interface (ALI) cell cultures.

Results: We found distinct species- and strain-level differences in host innate immunity and epithelial barrier response.

View Article and Find Full Text PDF

CXCR4 promotes tumor stemness maintenance and CDK4/6 inhibitors resistance in ER-positive breast cancer.

Breast Cancer Res

January 2025

Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.

Background: CDK4/6 inhibitors have significantly improved the survival of patients with HR-positive/HER2-negative breast cancer, becoming a first-line treatment option. However, the development of resistance to these inhibitors is inevitable. To address this challenge, novel strategies are required to overcome resistance, necessitating a deeper understanding of its mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!