Therapeutic antibodies represent one of the fastest growing segments in the pharmaceutical market. They are used in a broad range of disease fields, such as autoimmune diseases, cancer, inflammation and infectious diseases. The growth of the segment has necessitated development of new analytical platforms for faster and better antibody selection and characterization. Early quality control and risk assessment of biophysical parameters help prevent failure in later stages of antibody development, and thus can reduce costs and save time. Critical parameters such as aggregation, conformational stability, colloidal stability and hydrophilicity, are measured during the early phase of antibody generation and guide the selection process of the best lead candidates in terms of technical developability. We report on the use of a novel instrument (ActiPix/Viscosizer) for measuring both the hydrodynamic radius and the absolute viscosity of antibodies based on Taylor dispersion analysis and UV area imaging. The looped microcapillary-based method combines low sample consumption, fast throughput and high precision compared to other conventional methods. From a random panel of 130 antibodies in the early selection process, we identified some with large hydrodynamic radius outside the normal distribution and others with non-Gaussian Taylor dispersion profiles. The antibodies with such abnormal properties were confirmed later in the selection process to show poor developability profiles. Moreover, combining these results with those of the viscosity measurements at high antibody concentrations allows screening, with limited amounts of materials, candidates with potential issues in pre-formulation development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4623059PMC
http://dx.doi.org/10.4161/19420862.2014.985544DOI Listing

Publication Analysis

Top Keywords

taylor dispersion
12
selection process
12
dispersion analysis
8
analysis area
8
area imaging
8
hydrodynamic radius
8
antibody
5
early
4
early developability
4
developability screen
4

Similar Publications

Facile phase selective synthesis of copper antimony sulphide (CAS) nanostructures is important because of their tunable photoconductive and electrochemical properties. In this study, off-stoichiometric famatinite phase CAS (CAS) quasi-spherical and quasi-hexagonal colloidal nanostructures (including nanosheets) of sizes, 2.4-18.

View Article and Find Full Text PDF

β-Carotene (βC), a natural carotenoid, is the most important and effective vitamin A precursor, known also for its antioxidant properties. However, its poor water solubility, chemical instability, and low bioavailability limit its effectiveness as an orally delivered functional nutrient. Nanoparticle encapsulation improves βC's bioaccessibility by enhancing its stability and solubility.

View Article and Find Full Text PDF

Background: Coccidioidomycosis, caused by inhalation of spp. spores, is an emerging infectious disease that is increasing in incidence throughout the southwestern US. The pathogen is soil-dwelling, and spore dispersal and human exposure are thought to co-occur with airborne mineral dust exposures, yet fundamental exposure-response relationships have not been conclusively estimated.

View Article and Find Full Text PDF

The pygmy sperm whale (Kogia breviceps) possesses an exocrine gland associated with its false gill slit pigmentation pattern. The cervical gill slit gland is a compound tubuloalveolar gland that produces a holocrine secretion and displays maturational changes in size and secretory histology. While the morphology of the cervical gill slit gland has been described in detail, to date, the chemical composition of its secretion remains uncharacterized.

View Article and Find Full Text PDF

Taming the Flow with Hyperbranched Polyamides as Melt Modifiers in Polyamide Composites.

Macromol Rapid Commun

January 2025

Department of Advanced Materials Engineering, Chung-Ang University, Anseong, 17546, Republic of Korea.

Transport equipment manufacturers in the automotive and aerospace industries are focused on developing materials that enhance fuel efficiency and reduce carbon dioxide emissions. A significant approach is employing lightweight materials like aluminum, magnesium, and polymer-based composites. Polyamide-based composites, particularly nylon 66, as viable alternatives due to their excellent rigidity, chemical resistance, and thermal stability are investigated to address the limitations of traditional thermosetting resins, which are difficult to recycle and have lengthy molding processes that hinder mass production.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!