Deciding how much evidence to accumulate before making a decision is a problem we and other animals often face, but one that is not completely understood. This issue is particularly important because a tendency to sample less information (often known as reflection impulsivity) is a feature in several psychopathologies, such as psychosis. A formal understanding of information sampling may therefore clarify the computational anatomy of psychopathology. In this theoretical letter, we consider evidence accumulation in terms of active (Bayesian) inference using a generic model of Markov decision processes. Here, agents are equipped with beliefs about their own behavior--in this case, that they will make informed decisions. Normative decision making is then modeled using variational Bayes to minimize surprise about choice outcomes. Under this scheme, different facets of belief updating map naturally onto the functional anatomy of the brain (at least at a heuristic level). Of particular interest is the key role played by the expected precision of beliefs about control, which we have previously suggested may be encoded by dopaminergic neurons in the midbrain. We show that manipulating expected precision strongly affects how much information an agent characteristically samples, and thus provides a possible link between impulsivity and dopaminergic dysfunction. Our study therefore represents a step toward understanding evidence accumulation in terms of neurobiologically plausible Bayesian inference and may cast light on why this process is disordered in psychopathology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4426890 | PMC |
http://dx.doi.org/10.1162/NECO_a_00699 | DOI Listing |
PLoS One
December 2024
Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States of America.
Environmental contamination can have lasting impacts on surrounding communities, though the long-term impacts can be difficult to ascertain. The disaster at the Chornobyl Nuclear Power Plant in 1986 and subsequent remediation efforts resulted in contamination of the local environment with radioactive material, heavy metals, and additional environmental toxicants. Many of these are mutagenic in nature, and the full effect of these exposures on local flora and fauna has yet to be understood.
View Article and Find Full Text PDFJ Cachexia Sarcopenia Muscle
February 2025
Mitodicure GmbH, Kriftel, Germany.
Background: Recent studies provide strong evidence for a key role of skeletal muscle pathophysiology in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). In a 2021 review article on the pathophysiology of ME/CFS, we postulated that hypoperfusion and ischemia can result in excessive sodium and calcium overload in skeletal muscles of ME/CFS patients to cause mitochondrial damage. Since then, experimental evidence has been provided that supports this concept.
View Article and Find Full Text PDFFront Mol Neurosci
December 2024
Laboratory of Veterinary Hygiene, Faculty of Veterinary Medicine, Graduate School of Infectious Diseases, Hokkaido University, Sapporo, Japan.
The accumulation of a disease-specific isoform of prion protein (PrP) and histopathological lesions, such as neuronal loss, are unevenly distributed in the brains of humans and animals affected with prion diseases. This distribution varies depending on the diseases and/or the combinations of prion strain and experimental animal. The brain region-dependent distribution of PrP and neuropathological lesions suggests a neuronal cell-type-dependent prion propagation and vulnerability to prion infection.
View Article and Find Full Text PDFFront Cell Neurosci
December 2024
Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.
Introduction: Abnormal intracellular accumulation of Tau aggregates is a hallmark of Alzheimer's disease (AD) and other Tauopathies, such as Frontotemporal dementia (FTD). Tau deposits primarily affect neurons, but evidence indicates that glial cells may also be affected and contribute distinctively to disease progression. Cells can respond to toxic insults by orchestrating global changes in posttranslational modifications of their proteome.
View Article and Find Full Text PDFAm J Physiol Cell Physiol
December 2024
Muscle Health Research Centre, School of Kinesiology & Health Science, Faculty of Health, York University, Toronto, ON, Canada.
High-load resistance exercise (>60% of 1-repetition maximum) is a well-known stimulus to enhance skeletal muscle hypertrophy with chronic training. However, studies have intriguingly shown that low-load resistance exercise training (RET) (≤60% of 1-repetition maximum) can lead to similar increases in skeletal muscle hypertrophy as compared to high-load RET. This has raised questions about the underlying mechanisms for eliciting the hypertrophic response with low-load RET.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!