C. elegans as a model to study PTEN's regulation and function.

Methods

Department of Biology, Queen's University, 116 Barrie St., Kingston, ON K7L 3N6, Canada. Electronic address:

Published: May 2015

PTEN (phosphatase and tensin homolog deleted on chromosome 10) has important roles in tumor suppression, metabolism, and development, yet its regulators, effectors, and functions are not fully understood. DAF-18 is the PTEN ortholog in Caenorhabditis elegans. DAF-18's role is highly conserved to human PTEN, and can be functionally replaced by human PTEN. Thus C. elegans provides a valuable model to study PTEN. This review assesses current and emerging methods to study DAF-18's regulators and functions in C. elegans. We propose genetic modify screens to identify genes that interact with daf-18/PTEN. These genes are potential targets for anticancer drug therapies. We also provide a review on the roles DAF-18/PTEN has during C. elegans development and how studying these physiological roles can provide mechanistic insight on DAF-18/PTEN function.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ymeth.2014.12.009DOI Listing

Publication Analysis

Top Keywords

model study
8
human pten
8
elegans
5
pten
5
elegans model
4
study pten's
4
pten's regulation
4
regulation function
4
function pten
4
pten phosphatase
4

Similar Publications

Background: Primary care physicians (PCPs) and nurse practitioners play a key role in guiding caregivers on early peanut protein (PP) introduction, yet many lack adequate knowledge.

Aim Statement: This quality improvement study aimed to enhance understanding among PCPs and caregivers about evidence-based guidelines for early PP introduction in infants' diets.

Methods: Using the Stetler Model, PCP knowledge was evaluated through pre-test, educational video and some posttest material.

View Article and Find Full Text PDF

Purpose: Current technologies to define the zone of acute peripheral nerve injury intraoperatively are limited by surgical experience, time, cumbersome electrodiagnostic equipment, and interpreter reliability. In this pilot study, we evaluated a real-time, label-free optical technique for intraoperative nerve injury imaging. We hypothesize that fluorescence lifetime imaging (FLIm) will detect a difference between the time-resolved fluorescence signatures for acute crush injuries versus uninjured segments of peripheral nerves in sheep.

View Article and Find Full Text PDF

Background: Patellar instability is frequently encountered by orthopaedic surgeons. One of the major risk factors of this condition is underlying trochlear dysplasia (TD). Recent trends have indicated the use of multiple procedures to correct patellar instability under these conditions.

View Article and Find Full Text PDF

Inherited genetics represents an important contributor to risk of esophageal adenocarcinoma (EAC), and its precursor Barrett's esophagus (BE). Genome-wide association studies have identified ∼30 susceptibility variants for BE/EAC, yet genetic interactions remain unexamined. To address challenges in large-scale G×G scans, we combined knowledge-guided filtering and machine learning approaches, focusing on genes with (A) known/plausible links to BE/EAC pathogenesis (n=493) or (B) prior evidence of biological interactions (n=4,196).

View Article and Find Full Text PDF

Chondrocyte senescence is an important pathogenic factor causing osteoarthritis (OA) progression through persistently producing pro-inflammatory factors. Mesenchymal stem cells-derived small extracellular vesicles (MSC-sEVs) have shown anti-inflammatory effects in OA models, while persistent existence of senescent chondrocytes still promotes cartilage destruction. Therefore, improving the targeted elimination ability on senescent chondrocytes is required to facilitate the translation of MSC-sEVs in OA treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!