Slow components of the gating current in the frog node of Ranvier.

J Protein Chem

Physiologisches Institut, Universität d. Saarlandes, Homburg-Saar, FRG.

Published: June 1989

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF01674313DOI Listing

Publication Analysis

Top Keywords

slow components
4
components gating
4
gating current
4
current frog
4
frog node
4
node ranvier
4
slow
1
gating
1
current
1
frog
1

Similar Publications

Microcapsules stabilized by cellulose nanofibrils/whey protein complexes and modified with cinnamaldehyde: Characterization and release properties.

Food Chem

January 2025

School of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, China; Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, Sichuan, China. Electronic address:

This work aims to optimize encapsulation of Zanthoxylum schinifolium essential oil (ZSEO) in microcapsule to enhance its stability and slow-release capability. Herein, the ZSEO microcapsules stabilized by bacterial cellulose nanofibrils/whey protein isolate (BCNFs/WPI) complexes and modified by cinnamaldehyde (CA) were successfully prepared via spray drying. The microcapsules formed by 1.

View Article and Find Full Text PDF

Protective Coating of Single-Crystalline Ni-Rich Cathode Enables Fast Charging in All-Solid-State Batteries.

ACS Nano

January 2025

Battery and Electrochemistry Laboratory (BELLA), Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, Karlsruhe 76131, Germany.

Improving interfacial stability between cathode active material (CAM) and solid electrolyte (SE) is vital for developing high-performance all-solid-state batteries (ASSBs), with compatibility issues among the cell components representing a major challenge. CAM surface coating with a chemically inert ion conductor is a promising approach to suppress side reactions occurring at the cathode interfaces. Another strategy to mitigate mechanical degradation involves utilizing single-crystalline particle morphologies.

View Article and Find Full Text PDF

Enhancing Li Deposition Behavior through Valence Gradient-Assisted Iron Layer.

Nano Lett

January 2025

Department of Mechanical Engineering, University of Alberta, 9211-116 Street NW, Edmonton, Alberta T6G 1H9, Canada.

Uncontrolled lithium (Li) dendrite formation presents major safety risks and challenges in the Li host design. A novel approach is introduced, using a valence gradient in iron nanoparticles (Fe, Fe, Fe) to stabilize the anodes. An Fe component, with fast Li diffusion, ensures a steady supply of Li to Fe and Fe components, which have slower Li diffusion.

View Article and Find Full Text PDF

Objective: To observe and measure the morphological and temporal evolutionary features of the hypersynchronous (HYP) pattern in the mesial temporal seizure.

Methods: The HYP patterns during preictal and interictal states of 16 mesial temporal epileptic patients were analyzed. The wave components of the HYP transients were firstly observed and measured.

View Article and Find Full Text PDF

Background: Frailty is a geriatric syndrome of significant public health concern that causes vulnerability to physiologic stressors and an increased risk of mortality and hospitalizations. Dietary intake and quality are contributing factors to the development of frailty. The Mediterranean diet is known to be one of the healthiest eating patterns with promising health impacts for prevention.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!