The O polysaccharide of the lipopolysaccharide (O antigen) of Gram-negative bacteria often serves as a receptor for bacteriophages that can make the phage dependent on a given O-antigen type, thus supporting the concept of the adaptive significance of the O-antigen variability in bacteria. The O-antigen layer also modulates interactions of many bacteriophages with their hosts, limiting the access of the viruses to other cell surface receptors. Here we report variations of O-antigen synthesis and structure in an environmental Escherichia coli isolate, 4s, obtained from horse feces, and its mutants selected for resistance to bacteriophage G7C, isolated from the same fecal sample. The 4s O antigen was found to be serologically, structurally, and genetically related to the O antigen of E. coli O22, differing only in side-chain α-D-glucosylation in the former, mediated by a gtr locus on the chromosome. Spontaneous mutations of E. coli 4s occurring with an unusually high frequency affected either O-antigen synthesis or O-acetylation due to the inactivation of the gene encoding the putative glycosyltransferase WclH or the putative acetyltransferase WclK, respectively, by the insertion of IS1-like elements. These mutations induced resistance to bacteriophage G7C and also modified interactions of E. coli 4s with several other bacteriophages conferring either resistance or sensitivity to the host. These findings suggest that O-antigen synthesis and O-acetylation can both ensure the specific recognition of the O-antigen receptor following infection by some phages and provide protection of the host cells against attack by other phages.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4325112 | PMC |
http://dx.doi.org/10.1128/JB.02398-14 | DOI Listing |
Sci Adv
December 2024
Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA.
Podophages are, by far, the least well studied of all the bacteriophages. Despite being classified together due to their short, noncontractile tails, there is a huge amount of diversity among members of this group. Of the podophages, the N4-like family is the least well studied structurally and is quite divergent from well-characterized podophages such as T7 and P22.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159/2, Prospect 100 let Vladivostoku, Vladivostok 690022, Russia.
sp. KMM 8419 (=CB1-14) is a Gram-negative bacterium isolated from a food-net mucus sample of marine polychaete collected in the Sea of Japan. Here, we report the structure and biosynthetic gene cluster of the capsular polysaccharide (CPS) from strain KMM 8419.
View Article and Find Full Text PDFMicrobiol Spectr
December 2024
Department of Zoology, Faculty of Sciences, Kasetsart University, Bangkok, Thailand.
Exploring dietary methods to alter microbial communities and metabolic functions is becoming an increasingly fascinating strategy for improving health. Copra meal hydrolysate (CMH) is alternatively used as a gut health supplement. However, the functional diversity and metabolic activities in gut microbiome in relation to CMH treatment remain largely unknown.
View Article and Find Full Text PDFPLoS Pathog
December 2024
Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark.
Evolution of the highly successful and multidrug resistant clone ST111 in Pseudomonas aeruginosa involves serotype switching from O-antigen O4 to O12. How expression of a different O-antigen serotype alters pathogen physiology to enable global dissemination of this high-risk clone-type is not understood. Here, we engineered isogenic laboratory and clinical P.
View Article and Find Full Text PDFSci Rep
October 2024
Department of Biotechnology, Ghent University, Valentin Vaerwyckweg 1, Gent, 9000, Belgium.
Shiga toxin-producing Escherichia coli (STEC) is a foodborne pathogen with 6,534 annual reported cases in the EU in 2021. This pathotype generally contains strains with smooth LPS with O-antigen serogroup O157 being the predominant serogroup in the US. However, non-O157 STEC serogroups are becoming increasingly prevalent.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!