In the present study, the use of Rhodococcus erythropolis mutant strain RG9 expressing the cytochrome P450 BM3 mutant M02 enzyme has been evaluated for whole-cell biotransformation of a 17-ketosteroid, norandrostenedione, as a model substrate. Purified P450 BM3 mutant M02 enzyme hydroxylated the steroid with >95 % regioselectivity to form 16-β-OH norandrostenedione, as confirmed by NMR analysis. Whole cells of R. erythropolis RG9 expressing P450 BM3 M02 enzyme also converted norandrostenedione into the 16-β-hydroxylated product, resulting in the formation of about 0.35 g/L. Whole cells of strain RG9 itself did not convert norandrostenedione, indicating that metabolite formation is P450 BM3 M02 enzyme mediated. This study shows that R. erythropolis is a novel and interesting host for the heterologous expression of highly selective and active P450 BM3 M02 enzyme variants able to perform steroid bioconversions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00253-014-6281-7 | DOI Listing |
Biotechnol Lett
November 2024
School of Biological Sciences and Biotechnology, Graduate School, Chonnam National University, 77 Yongbongro, Gwangju, 61186, Republic of Korea.
The monooxygenase activity of engineered CYP102A1 on α-terpineol was investigated. CYP102A1 M850 mutant (F11Y/R47L/D68G/F81I/F87V/E143G/L188Q/E267V/H408R) showed the highest catalytic activity toward α-terpineol among the engineered mutants produced by random mutagenesis. The major product (P1) of α-terpineol, p-menth-1-ene-3,8-diol, was characterized by high-performance liquid chromatography, gas-chromatography mass spectrometry, and nuclear magnetic resonance spectroscopy.
View Article and Find Full Text PDFChem Sci
November 2024
Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology 1088 Xueyuan Avenue Shenzhen P. R. China
Biotechnol J
November 2024
MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, P. R. China.
Murideoxycholic acid (MDCA), as a significant secondary bile acid derived from the metabolism of α/β-muricholic acid in rodents, is an important component in maintaining the bile acid homeostasis. However, the biosynthesis of MDCA remains a challenging task. Here, we present the development of cytochrome P450 monooxygenase CYP102A1 (P450 BM3) from Bacillus megaterium, employing semi-rational protein engineering technique.
View Article and Find Full Text PDFChembiochem
November 2024
State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
(+)-Bicyclogermacrene is a sesquiterpene compound found in various plant essential oils and serves as a crucial precursor for multiple biologically active compounds. Many derivatives of (+)-bicyclogermacrene have been shown to exhibit valuable bioactivities. Cytochrome P450 BM3 from Bacillus megaterium can catalyze a variety of substrates and different types of oxidation reactions, making it become a powerful tool for oxidizing terpenes.
View Article and Find Full Text PDFInt J Mol Sci
October 2024
Institute of Biomedical Chemistry, 10, Pogodinskaya St., 119121 Moscow, Russia.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!