Whilst prolonging hemofilter (circuit) life, heparin increases bleeding risk. The impact of achieved activated partial thromboplastin time (APTT) on circuit life and bleeding risk has not been assessed in a modern critically ill cohort. Lowering filtration fraction may be an alternative means of prolonging circuit life, but is often overlooked in critical care. An observational study of 309 consecutive circuits in a general intensive care unit was conducted using a wide target APTT range. Multilevel modeling was used to predict circuit life and bleeding according to achieved APTT and filtration fraction. Independent predictors of circuit failure (i.e. unplanned ending of treatment) included filtration fraction (P<0.001, HR 1.07 per 1% increase), peak APTT (P<0.001, HR 0.8 per 10 s increase or 0.3 APTR increase) and baseline PT (P=0.014, HR 0.91 for every 50% increase). The only significant predictor of bleeding was peak APTT (P=0.017, OR 1.05 per 10 s increase). Every 10 s APTT increase was associated with a 20% reduction in circuit failure, but a 5% increase in hemorrhage. A 3% reduction in filtration fraction was associated with the same improvement in circuit life as a 10 s increase in APTT. Increasing APTT prolongs circuit life but carries a substantial risk of bleeding even in modern practice. Filtration fraction has a large impact on circuit life in the critically ill: a 3% reduction in filtration fraction, e.g. by increasing blood flow or delivering some of the clearance via dialysis, would be expected to reduce circuit failure as much as a 10 s increase in APTT.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1744-9987.12253DOI Listing

Publication Analysis

Top Keywords

circuit life
20
filtration fraction
16
bleeding risk
12
risk impact
8
impact achieved
8
achieved activated
8
activated partial
8
partial thromboplastin
8
thromboplastin time
8
life bleeding
8

Similar Publications

Purpose: The purpose of this case was to investigate objectively and quantitatively the effects of the application of repeated focal muscle vibration (fMV) associated with neurocognitive exercise on a 46-year-old patient with spastic paraparesis secondary to the surgical removal of a C5-C6 ependymoma.

Methods: We have evaluated gait parameters, spasticity, and pain with clinical scales. We have applied focal muscle vibration on quadriceps femoris, hamstrings, gastrocnemius, and iliopsoas muscles bilaterally.

View Article and Find Full Text PDF

Glial-derived TNF/Eiger signaling promotes somatosensory neurite sculpting.

Cell Mol Life Sci

January 2025

School of Life Science and Technology, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China.

The selective elimination of inappropriate projections is essential for sculpting neural circuits during development. The class IV dendritic arborization (C4da) sensory neurons of Drosophila remodel the dendritic branches during metamorphosis. Glial cells in the central nervous system (CNS), are required for programmed axonal pruning of mushroom body (MB) γ neurons during metamorphosis in Drosophila.

View Article and Find Full Text PDF

S1PR3-driven positive feedback loop sustains STAT3 activation and keratinocyte hyperproliferation in psoriasis.

Cell Death Dis

January 2025

State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, 210093, Nanjing, P.R. China.

Psoriasis is a chronic inflammatory skin disorder characterized by hyperproliferation of keratinocytes and persistent inflammation. Although persistent activation of signal transducer and activator of transcription 3 (STAT3) is implicated in its pathogenesis, the mechanisms underlying the sustained STAT3 activation remain poorly understood. Here, we identify sphingosine-1-phosphate receptor 3 (S1PR3) as a critical regulator of STAT3 activation and psoriasis pathogenesis, orchestrating a self-amplifying circuit that sustains keratinocyte hyperproliferation and chronic inflammation.

View Article and Find Full Text PDF

Communication sound processing in mouse AC is lateralized. Both left and right AC are highly specialised and differ in auditory stimulus representation, functional connectivity and field topography. Previous studies have highlighted intracortical functional circuits that explain hemispheric stimulus preference.

View Article and Find Full Text PDF

Neurobiological mechanisms of nicotine's effects on feeding and body weight.

Neurosci Biobehav Rev

January 2025

Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China; Beijing Life Science Academy, Beijing, China. Electronic address:

Nicotine, a neuroactive substance in tobacco products, has been widely studied for its effects on feeding and body weight, mostly focusing on the involvement of nervous system, metabolism, hormones, and gut microbiota. To elucidate the action mechanism of nicotine on feeding and body weight, especially the underlying neurobiological mechanisms, we reviewed the studies on nicotine's effects on feeding and body weight by the regulation of various nerve systems, energy expenditure, peripheral hormones, gut microbiota, etc. The role of neuronal signaling molecules such as AMP-activated protein kinase (AMPK) and kappa opioid receptor (κOR) were specialized in the nicotine-regulating energy expenditure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!