PHOTOSYSTEM II PROTEIN33, a protein conserved in the plastid lineage, is associated with the chloroplast thylakoid membrane and provides stability to photosystem II supercomplexes in Arabidopsis.

Plant Physiol

Department of Chemistry and Biochemistry (R.F., C.E.B.-H., S.S.M.) and Institute for Genomics and Proteomics (S.S.M.), University of California, Los Angeles, California 90095;Department of Biological and Environmental Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden (A.H., B.L.);Department of Chemistry, Ångström Laboratory, Uppsala University, 751 20 Uppsala, Sweden (F.M.); andDepartment of Biochemistry and Molecular Biology and Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824 (R.L.L., B.L.)

Published: February 2015

Photosystem II (PSII) is a multiprotein complex that catalyzes the light-driven water-splitting reactions of oxygenic photosynthesis. Light absorption by PSII leads to the production of excited states and reactive oxygen species that can cause damage to this complex. Here, we describe Arabidopsis (Arabidopsis thaliana) At1g71500, which encodes a previously uncharacterized protein that is a PSII auxiliary core protein and hence is named PHOTOSYSTEM II PROTEIN33 (PSB33). We present evidence that PSB33 functions in the maintenance of PSII-light-harvesting complex II (LHCII) supercomplex organization. PSB33 encodes a protein with a chloroplast transit peptide and one transmembrane segment. In silico analysis of PSB33 revealed a light-harvesting complex-binding motif within the transmembrane segment and a large surface-exposed head domain. Biochemical analysis of PSII complexes further indicates that PSB33 is an integral membrane protein located in the vicinity of LHCII and the PSII CP43 reaction center protein. Phenotypic characterization of mutants lacking PSB33 revealed reduced amounts of PSII-LHCII supercomplexes, very low state transition, and a lower capacity for nonphotochemical quenching, leading to increased photosensitivity in the mutant plants under light stress. Taken together, these results suggest a role for PSB33 in regulating and optimizing photosynthesis in response to changing light levels.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4326745PMC
http://dx.doi.org/10.1104/pp.114.253336DOI Listing

Publication Analysis

Top Keywords

photosystem protein33
8
transmembrane segment
8
psb33 revealed
8
psb33
7
protein
6
psii
5
photosystem
4
protein33 protein
4
protein conserved
4
conserved plastid
4

Similar Publications

PHOTOSYSTEM II PROTEIN33, a protein conserved in the plastid lineage, is associated with the chloroplast thylakoid membrane and provides stability to photosystem II supercomplexes in Arabidopsis.

Plant Physiol

February 2015

Department of Chemistry and Biochemistry (R.F., C.E.B.-H., S.S.M.) and Institute for Genomics and Proteomics (S.S.M.), University of California, Los Angeles, California 90095;Department of Biological and Environmental Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden (A.H., B.L.);Department of Chemistry, Ångström Laboratory, Uppsala University, 751 20 Uppsala, Sweden (F.M.); andDepartment of Biochemistry and Molecular Biology and Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824 (R.L.L., B.L.)

Photosystem II (PSII) is a multiprotein complex that catalyzes the light-driven water-splitting reactions of oxygenic photosynthesis. Light absorption by PSII leads to the production of excited states and reactive oxygen species that can cause damage to this complex. Here, we describe Arabidopsis (Arabidopsis thaliana) At1g71500, which encodes a previously uncharacterized protein that is a PSII auxiliary core protein and hence is named PHOTOSYSTEM II PROTEIN33 (PSB33).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!