The Ankrd1 (ankyrin repeat domain 1) gene is known to be up-regulated in heart failure and acts as a co-activator of p53, modulating its transcriptional activity, but it remains inconclusive whether this gene promotes or inhibits cell apoptosis. In the present study, we attempted to investigate the role of Ankrd1 on AngII (angiotensin II)- or pressure-overload-induced cardiomyocyte apoptosis. In the failing hearts of mice with pressure overload, the protein expression of Ankrd1-encoded CARP (cardiac ankyrin repeat protein) was significantly increased. In NRCs (neonatal rat cardiomyocytes), AngII increased the expression of Ankrd1 and CARP. In the presence of AngII in NRCs, infection with a recombinant adenovirus containing rat Ankrd1 cDNA (Ad-Ankrd1) enhanced the mitochondrial translocation of Bax and phosphorylated p53, increased mitochondrial permeability and cardiomyocyte apoptosis, and reduced cell viability, whereas these effects were antagonized by silencing of Ankrd1. Intra-myocardial injection of Ad-Ankrd1 in mice with TAC (transverse aortic constriction) markedly exacerbated cardiac dysfunction with an increase in the lung weight/body weight ratio and a decrease in left ventricular fractional shortening. Cardiomyocyte apoptosis and the expression of phosphorylated p53 were also significantly increased in Ad-Ankrd1-infected TAC mice, whereas knockdown of Ankrd1 significantly inhibited the apoptotic signal pathway as well as cardiomyocyte apoptosis in pressure-overload mice. These findings indicate that overexpression of Ankrd1 exacerbates pathological cardiac dysfunction through enhancement of cardiomyocyte apoptosis mediated by the up-regulation of p53.

Download full-text PDF

Source
http://dx.doi.org/10.1042/CS20140586DOI Listing

Publication Analysis

Top Keywords

cardiomyocyte apoptosis
24
ankyrin repeat
12
repeat domain
8
phosphorylated p53
8
p53 increased
8
cardiac dysfunction
8
apoptosis
7
ankrd1
7
cardiomyocyte
6
p53
5

Similar Publications

Mitochondrial calcium uniporter complex: An emerging therapeutic target for cardiovascular diseases (Review).

Int J Mol Med

March 2025

Department of Cardiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421000, P.R. China.

Cardiovascular disease (CVD) is currently a major factor affecting human physical and mental health. In recent years, the relationship between intracellular Ca and CVD has been extensively studied. Ca movement across the mitochondrial inner membrane plays a vital role as an intracellular messenger, regulating energy metabolism and calcium homeostasis.

View Article and Find Full Text PDF

The transcriptional repressor HEY2 regulates mitochondrial oxidative respiration to maintain cardiac homeostasis.

Nat Commun

January 2025

Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.

Energy deprivation and metabolic rewiring of cardiomyocytes are widely recognized hallmarks of heart failure. Here, we report that HEY2 (a Hairy/Enhancer-of-split-related transcriptional repressor) is upregulated in hearts of patients with dilated cardiomyopathy. Induced Hey2 expression in zebrafish hearts or mammalian cardiomyocytes impairs mitochondrial respiration, accompanied by elevated ROS, resulting in cardiomyocyte apoptosis and heart failure.

View Article and Find Full Text PDF

Recombinant dsAAV9-mediated Endogenous Overexpression of Macrophage Migration Inhibitory Factor Alleviates Myocardial Ischemia-Reperfusion Injury via Activating AMPK and ERK1/2 Signaling Pathways.

Cardiovasc Drugs Ther

January 2025

State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute, Xinjiang Medical University, No. 137 Liyushan South Road, Urumqi, 830054, China.

Purpose: To investigate the protective effect and mechanism of enhanced expression of endogenous macrophage migration inhibitory factor (MIF) on cardiac ischemia-reperfusion (I/R) injury.

Methods: A recombinant double-stranded adeno-associated virus serotype 9 with MIF or green fluorescent protein (GFP) genes (dsAAV9-MIF/GFP) was transduced into mice and neonatal rat ventricular myocytes (NRVMs). The models of cardiac 60 min ischemia and 24 h reperfusion and 12 h hypoxia/12 h reoxygenation (H/R) were established in mice and NRVMs, respectively.

View Article and Find Full Text PDF

Myocardial ischemia/reperfusion injury (MIRI) is a serious clinical complication that is caused by reperfusion therapy following myocardial infarction (MI). Mitochondria-related genes (Mito-RGs) play important roles in multiple diseases. However, the role of mitochondria-related genes in MIRI remains largely unknown.

View Article and Find Full Text PDF

Loss of Bcl2-associated athanogene 3 (BAG3) is associated with dilated cardiomyopathy (DCM). BAG3 regulates sarcomere protein turnover in cardiomyocytes; however, the function of BAG3 in other cardiac cell types is understudied. In this study, we used an isogenic pair of BAG3-knockout and wild-type human induced pluripotent stem cells (hiPSCs) to interrogate the role of BAG3 in hiPSC-derived cardiac fibroblasts (CFs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!