Autoimmunity and inflammation have been implicated as causative factors of seizures and epilepsy. Autoimmune disorders can affect the central nervous system as an isolated syndrome or be part of a systemic disease. Examples of systemic autoimmune disorders include systemic lupus erythematosus, antiphospholipid syndrome, rheumatic arthritis, and Sjögren syndrome. Overall, there is a 5-fold increased risk of seizures and epilepsy in children with systemic autoimmune disorders. Various etiologic factors have been implicated in causing the seizures in these patients, including direct inflammation, effect on blood vessels (vasculitis), and production of autoantibodies. Potential treatments for this autoimmune injury include steroids, immunoglobulins, and other immune-modulatory therapies. A better understanding of the mechanisms of epileptogenesis in patients with systemic autoimmune diseases could lead to targeted treatments and better outcomes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.spen.2014.07.001 | DOI Listing |
ACR Open Rheumatol
January 2025
Jefferson Einstein Philadelphia Hospital, Philadelphia, Pennsylvania.
Objective: Evaluate prevalence of new onset autoimmune conditions (ACs) after commencement of immune checkpoint inhibitors (ICIs).
Methods: This retrospective observational study was done using TriNetX. Patients with neoplasm for which ICIs were approved were stratified into two groups based on ICI use.
Eur J Pediatr
January 2025
Pediatric Hematology and Oncology, Liv Hospital, Gaziantep, Turkey.
Unlabelled: Spondyloenchondrodysplasia (SPENCD) is a rare genetic disorder characterized with skeletal dysplasia, immune dysregulation, and neurological impairment. Patients diagnosed with SPENCD at a single pediatric hematology center were included in the study. The patients' clinical characteristics, symptoms at presentation, imaging and laboratory results, and genetic analysis results were collected retrospectively from their files.
View Article and Find Full Text PDFActa Parasitol
January 2025
Cytokines and NO Synthases Team, LBCM, FSB, USTHB, BP 32 El Alia, Bab Ezzouar, Algiers, 16111, Algeria.
Purpose: Since extract of the laminated layer (LL) from E. granulosus showed immuno-modulatory effects in vitro and in vivo, we sought to determine its effect on the onset, development, and evolution of experimental auto-immune uveitis (EAU). The latter is a model of some human diseases with ocular inflammation that can cause blindness.
View Article and Find Full Text PDFJ Funct Biomater
January 2025
School of Mechanical Engineering, School of Basic Science, Yeungnam University, Gyeongsan 38541, Republic of Korea.
Autoimmune diseases present complex therapeutic challenges due to their chronic nature, systemic impact, and requirement for precise immunomodulation to avoid adverse side effects. Recent advancements in biodegradable and stimuli-responsive nanomaterials have opened new avenues for targeted drug delivery systems capable of addressing these challenges. This review provides a comprehensive analysis of state-of-the-art biodegradable nanocarriers such as polymeric nanoparticles, liposomes, and hydrogels engineered for targeted delivery in autoimmune therapies.
View Article and Find Full Text PDFCells
January 2025
Department of Rheumatology & Clinical Immunology, Amsterdam UMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.
Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by inflammation leading to joint damage and systemic complications. Angiogenesis promotes inflammation and contributes to RA progression. This study evaluated potential anti-angiogenic effects of several compounds including small-molecule kinase inhibitors, such as sunitinib (pan-kinase inhibitor), tofacitinib (JAK-inhibitor), NIKi (NF-κB-inducing kinase inhibitor), and the integrin-targeting peptide fluciclatide, using a scratch assay and 3D spheroid-based models of angiogenesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!